Сторона равна 6√2 ед.
Объяснение:
Принимаем такое условие: "Найти сторону равностороннего треугольника, вписанного в окружность, радиус которой равен 4√(3/2)", так как в противном случае было бы: "Найти сторону равностороннего треугольника, вписанного в окружность, радиус которой равен 2√3.
В равностороннем треугольнике центр описанной окружности лежит на медиане, которая делится этим центром в отношении 2:1, считая от вершины. В равностороннем треугольнике медиана, высота и биссектриса совпадают. Следовательно, радиус описанной окружности нашего треугольника равен 2/3 высоты. Тогда высота равна 4√(3/2):(2/3) = 6√(3/2).
Пусть сторона треугольника равна 2х. По Пифагору:
(2х)² -х² = (6√(3/2))² => 3x²= 54 => х = 3√2 ед.
Сторона треугольника равна 6√2 ед.
Проверим формулой для правильного треугольника:
R = (√3/3)·a => a = R√3. В нашем случае:
а = 4√(3/2)·√3 = 12/√2 = 6√2 ед.
Решение.
Пусть Х СОВ, тогда АОС - Х+27, т.к АОВ=130, то => СОВ+АОС= 130.
Х+Х+27=130
2Х=130-27
2Х=103
Х=51,5- СОВ
2)27+51,5=78,5- АОС
ответ: АОС- 78,5; СОВ- 51,5