По-просту говоря: биссектриса-это такая крыса, которая бегает по углам и делит их напополам. биссектриса МА делит угол КМL на два равных угла, тоесть угол КМА=LМА=104/2=52 (каждый.) нам требуется угол АМL,он равен 52
Что бы вписать окружность в трапецию, необходимо что бы суммы противоположных сторон были равны. Следовательно сумма двух равных боковых сторон (20) должна равняться сумме двух оснований трапеции. Тогда второе основание соответственно равно 18 см. Площадь трапеции это полусумма оснований умноженная на высоту. Так как трапеция равнобедренная можем найти высоту: Опустим две высоты к большему основанию и получим три фигуры: два равных прямоугольных треугольника и прямоугольник. Катет прямоугольного треугольника будет равен: (18-2):2=8 см. А гипотенуза 10 см. По теореме Пифагора найдем второй катет: 10^2=8^2+х^2 100=64+х^2 х^2=36 х=6 Высота трапеции равна 6 см. Можем найти площадь: S=(2+18)/2 *6 S=20/2 *6 S=10*6 S=60 см^2. ответ: площадь трапеции равна 60 см^2.
Основанием наклонной треугольной призмы есть правильный треугольник. Если боковое ребро призмы имеет длину 8 см и наклонено к плоскости основания под углом 30°, а одна из вершин призмы проектируется в центр нижнего основания, то чему равен объем призмы?
РЕШЕНИЕ:
• Рассмотрим тр. В1ВН (угол В1НВ = 90°): sin30° = B1H/BB1 => B1H = BB1 • sin30° = 8 • 1/2 = 4 см cos30° = BH/BB1 => BH = BB1 • cos30° = 8 • V3/2 = 4V3 см • Рассмотрим тр. АВС ( равносторонний ): BH = R = 4V3 AB = a = V3R = V3 • 4V3 = 4 • 3 = 12 см AB = BC = AC = 12 см • Обьём прямой призмы равен: V = S осн. • h = S abc • B1H = ( a^2 • V3 / 4 ) • 4 = ( 12^2• V3 / 4 ) • 4 = 144V3