Обозначим прямоугольник ABCD и точку пересечения диагоналей O как
B C
E O
A D
Треугольник AOB равнобедренный, поэтому высота OE является и медианой. Тогда, так как AB=14, AE=7. По теореме Пифагора из прямоугольного треугольника AEO находим AO^2=EO^2+AE^2=49+36=85. AO=sqrt(85). Тогда AC=2sqrt(85) и AC^2=4*85=340. Из прямоугольного треугольника ABC по теореме Пифагора BC^2=AC^2-AB^2=340-196=144. Значит BC=12. Тогда площадь прямоугольника равна AB*BC=14*12=168.
ответ:168.
Найдём пересечение с осью абсцисс, след. y=0; 5*x-3*0=15; x=15/5=3.Итак,т.О(3;0)-точка пересечения заданной прямой с осью абсцисс.