Ищем высоту пирамиды : будет прямоугольный треугольник: два катета
Один - высота пирамиды
Второй - половина диагонали основания , гипотенуза - боковое ребро
Половина диагонали основания равна 4корнч из 2
Высота пирамиды равна 4v2*tg60=4v6
Теперь ищем высоту боковой стороны
Из прямоугольного треугольника где катет высота пирамиды, половина стороны , если из точки пересечения диагоналей провести перпендикуляр на сторону основания
Половина основания 4 , высота пирамиды 4v6
Высота боковой стороны гипотенуза
4^2+(4v6)^2=16+16*6=16*7
Высота боковой грани 4v7
Площадь поверхности
8*8+1/2*4*4v7=64+8v7
Объяснение:
1) из того, что вд - медиана, - равенство площадей треугольников авд и свд.
2) из равенства площадей - равенство сторон ав и вс.
3) из равенства сторон - вд - не только медиана треугольника авс, но и биссектриса (угол авд = углу свд) и высота (вд перпендикулярна ас).
4) из перпендикулярности вд к ас треугольник авд - прямоугольный.
5) из отношения 1: 2 катета вд к гипотенузе ав - угол а=30 градусов.
6) из суммы углов треугольника = 180 градусов - угол авд = 60 градусов.
7) из 3) угол свд = 60 градусов.
8) найти угол fвс.
9) сравнить угол fвс с углом свд.
10) сделать вывод.
успеха!
неизвестный катет равен
гипотенуза равна
Объяснение:
Решение в приложении