Если квадрат и ромб имеют одинаковые периметры, тто они имеют и одинаковые стороны. Вычисление площади параллелограмма в случае ромба. В данном случае стороны равны, значит формула упрощается до . Заметим, что Это угол между сторонами ромба. Здесь не имеет значения острый или тупой, так как в обоих случаях будет положительный ответ. Площадь квадрата же всегда равна . Заметим, что синус всегда меняется в данном случае от 0 до 1. То есть только в случае синуса равного 1 (а это квадрат) площадь ромба равна площади квадрата, в остальных случаях площадь ромба всегда меньше площади квадрата.
Векторы: ВМ=ВО+ОМ. ОМ=(1/3)ОD1 (так как точка М - точка пересечения медиан треугольника AСD1 - делит вектор ОD1 в отношении 2:1, считая от вершины D1 - свойство медиан). BD=BC+CD = c+a. ВО=(1/2)*BD = (c+a)/2, так как точка О - точка пересечения диагоналей параллелограмма АВСD. OD1=OD+DD1 = (c+a)/2 +b (так как векторы BB1 и DD1 равны, как противоположные стороны параллелепипеда). OM=(1/3)*OD1 = (1/3)* ((c+a)/2 +b) = (c+a+2b)/6. BM=BO+OM = (1/2)*BD + OM = (c+a)/2 +(a+2b+c)/6 = (4a+2b+4c)/6. Или ВМ=(2a+b+2c)/3. ответ: вектор ВМ=(2a+b+2c)/3.