М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
GMGasanovmm
GMGasanovmm
16.11.2020 20:55 •  Геометрия

Назовите стороны, вершины, углы треугольника сеf.укажите: 1) угол противолежащий стороне cf; 2) углы прилежащие к стороне ce; 3) сторону противолежащую углу е; 4) стороны прилежащие к углу f.

👇
Ответ:
lty220051
lty220051
16.11.2020
1)Е
2)С,Е
3)СF
4)EF, CF
4,6(61 оценок)
Открыть все ответы
Ответ:
Bakuninalexander
Bakuninalexander
16.11.2020
Нужно нарисовать треугольник. Расстояние от данной точки до прямой - это высота данного треугольника. Эта высота разбивает данный треугольник на два прямоугольных, у которых известно по одному катету (9 и 16 см).
Наклонные - это гипотенузы полученных прямоугольных треугольников (Обозначим их длины через х и х+5).
А высота исходного треугольника - это общий катет этих двух прямоугольных.
Выразим этот катет из обоих треугольников с теоремы Пифагора:
х² - 81 = (х + 5)² - 256
х² - 81 = х² + 10х + 25 - 256
х² - 81 = х² + 10х - 231
10х = 150
х = 15
Мы нашли одну из наклонных. А теперь находим то самое расстояние от точки (высота исходного треугольника или катет любого из 2х прямоугольных):
225 - 81 = а² (где а - та самая высота)
а² = 144
а = 12
ответ 12
4,4(90 оценок)
Ответ:
ivac6136
ivac6136
16.11.2020
Высоты треугольника (или их продолжения) пересекаются в одной точке.
 Рассмотрим произвольный треугольник ABC и докажем, что прямые AA1, BB1, CC2 , содержащие его высоты, пересекаются в одной точкеПроведем через каждую вершину треугольника ABC прямую, параллельную противоположной стороне. Получим треугольник A2B2C2. Точки ABC являются серединами сторон этого треугольника. Действительно, ABA2C и ABCB2, как противоположные стороны параллелограммов ABA2C и ABCB2, поэтому A2CCB2. Аналогично C2AAB2 и C2BBA2. Кроме того, как следует из построения, CC1A2B2, AA1B2C2 и BB1A2C2. Таким образом прямые AA1BB1CC1 являются серединными перпендикулярами к сторонам треугольника A2B2C2. Следовательно, они пересекаются в одной точке. Что и требовалось доказать.

Сфомулируйте и докажите теорему о пересечение высот треугольника
4,7(14 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ