Через стороны bc и ac треугольника abc проведена плоскость параллельна ab и пересекающая эти стороны соответственно в т. b1 и a1 если ab=8см и aa1/a1c =5/3
Пусть сторона квадрата до увеличения - х, тогда после увеличения на 20% - 1,2х. Пусть площадь квадрата до увеличения - S, тогда после увеличения - S+11. Можно составить систему уравнений: х²=S (1,2x)²=S+11
х²=S 1,44x²=S+11
Вычтем из второго уравнения первое: 1,44x²-х²=S+11-S 0,44x²=11 x²=11/0,44=25 x1=-5 - не подходит по условию задачи, так как сторона квадрата не может быть отрицательной величиной х2=5 (дм) Итак, сторона квадрата до увеличения равна 5 дм. Площадь квадрата до увеличения равна S=x²=5²=25 (дм²)
Ну смотри: Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник. т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть: (10+18)/2*3=42. ответ:42
А1В1 / АВ = А1С / АС = В1С / ВС
А1В1 = АВ * А1С / АС
1) AA1 / AC = 2 / 3 =>
AA1 --- это 2 части, АС --- это 3 части, на А1С остается 1 часть)))
=> A1B1 = 15*1 / 3 = 5
2) AA1 / A1C = 5 / 3 =>
AA1 --- это 5 частей, А1С --- это 3 части, АС = АА1+А1С = 8 частей)))
=> A1B1 = 8*3 / 8 = 3
4) => A1B1 = b*c / (AA1+A1C) = b*c / (a+c)
А1В1 / АВ = В1С / ВС
А1В1 = АВ * В1С / ВС
3) => A1B1 = 4*10 / 5 = 8