Вероятно, в задаче идет речь о построении перпендикуляра к прямой, проходящего через данную точку на прямой, с циркуля и линейки.
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С. 2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С. 3) Через точки пересечения этих окружностей (К и Н) проведем прямую b. Прямая b - искомый перпендикуляр к прямой а.
Доказательство: А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС. Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.
1.Рассмотрим треугольник PHO и треугольник MKO:
OH=OK (по усл.)
OP=OM (по усл.) }→ треуг.PHO=треуг.MKO
угол MOK=углу POH (по св-ву вертикальных углов)
→угол OPH = углу OMK, как соответственные элементы в равных треугольниках;
2. MO=PO (по усл.)
HO=KO (по усл.) }→PK=MH
PK=PO+KO
MH=MO+HO
3. Т.к. треугольник MOP - р/б, угол MPO= углу OMP, как углы при основании р/б треуг.;
4. Рассмотрим треугольник PMH и треугольник MPK:
MH=PK(см п. 2);
MP - общая; }→треуг. PMH= треуг. MPK;
угол MPO = углу OMP (см п.3)
ч.т.д.