Можно задать встречный вопрос: какая единица измерения была первой? может быть радиан придумали раньше... угол в 1 радиан (от слова радиус) --это такой центральный угол окружности, который вырезает из окружности дугу, равную радиусу (вне зависимости от длины радиуса... это всегда один и тот же угол)) мне кажется, что много вычислявшие египтяне просто заметили некоторую закономерность, верную для любой окружности: если длину окружности разделить на ее диаметр, то получится всегда одно и то же число, примерно равное 3.14... аналогичный вопрос: почему градусов именно 360 в окружности, не 10, не 100 (что было бы логичнее при десятичной системе счисления...)
Диагональ квадрата является биссектрисой угла В квадрата, значит высота треугольника MBN - это и биссектриса и медиана треугольника MBN, а стороны квадрата AD и СD - средние линии этого треугольника, так как они параллельны сторонам BN и BM соответственно и проходят через середину стороны MN треугольника. Сторона квадрата равна 15,5/√2 (так как диагональ равна 15,5 - дано). Тогда ВN=BM=31/√2, а MN=√(BN²+BM²) = 31 ед. ответ: MN=31 ед.
Второй вариант: треугольник DBN (и DBM) - прямоугольный равнобедренный, так как острый угол DBN (как и <DBM)=45°. Значит DN=DM=DB=15,5. тогда MN=2*15,5=31 ед. ответ: MN=31 ед.
какая единица измерения была первой?
может быть радиан придумали раньше...
угол в 1 радиан (от слова радиус) --это такой центральный угол окружности, который вырезает из окружности дугу, равную радиусу
(вне зависимости от длины радиуса... это всегда один и тот же угол))
мне кажется, что много вычислявшие египтяне просто заметили некоторую закономерность, верную для любой окружности: если длину окружности разделить на ее диаметр, то получится всегда одно и то же число, примерно равное 3.14...
аналогичный вопрос:
почему градусов именно 360 в окружности, не 10, не 100 (что было бы логичнее при десятичной системе счисления...)