Опустим перпендикуляр на нижнее большее основание трапеции из вершины тупого угла. Получим высоту, которая равна меньшей боковой сторое, т.е. √3. Перпендикуляр отколол от трапеции прямоугольный треугольник, в котором острые углы 30° и 60°. Гипотенуза, т.е. большая боковая сторона в трапеции в два раза больше, чем катет против 30°, а другой катет равен √3. По если катет х, то гипотенуза 2х, а второй катет √3. Найдем х. По теореме ПИфагора 4х²-х²=3. Т.к. х-положит., то х=1. Значит, нижнее основание 4=1=5, а верхнее 4, высота трапеции √3. найдем площадь, как произведение полусуммы оснований на высоту ((4+5)*√3)/2=4,5√3 9см²)
Доказательство. Рассмотрим треугольник ABC с высотами AA1, BB1 и CC1 и докажем, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
Проведем через точки A, B, C прямые, соответственно перпендикулярные к прямым AA1, BB1, CC1 и, следовательно, соответственно параллельные прямым BC, CA, AB (рис. 79). Эти прямые, пересекаясь, образуют треугольник A2B2C2.
Так как C2A || BC и C2B || AC, то четырехугольник BC2AC — параллелограмм, поэтому C2A = BC. По аналогичной причине AB2 = BC. Из этих двух равенств следует, что C2A = AB2, т. е. точка A — середина отрезка C2B2. Аналогично можно доказать, что точки B и C — середины отрезков A2C2 и A2B2.
Таким образом, прямые AA1, BB1, CC1 являются серединными перпендикулярами к сторонам треугольника A2B2C2, поэтому они пересекаются в одной точке. Теорема доказана.
Точку пересечения высот треугольника (или их продолжений) для краткости называют ортоцентром треугольника.
Итак, с каждым треугольником связаны четыре точки: точка пересечения биссектрис, точка пересечения серединных перпендикуляров к сторонам, точка пересечения медиан и ортоцентр. Эти четыре точки называются замечательными точками треугольника.