Многоугольник - часть плоскости, ограниченная замкнутой ломаной без самопересечений, любые два соседних звена которой не лежат на одной прямой.
Вершины ломаной называются вершинами многоугольника, стороны ломаной - сторонами многоугольника.
Диагональ многоугольника - отрезок, соединяющий любые две несоседние вершины.
Периметр многоугольника - сумма длин всех его сторон.
Выпуклый многоугольник - это многоугольник, лежащий по одну сторону от любой прямой, содержащей его сторону.
Формула суммы углов выпуклого многоугольника:
180°(n - 2)
Вывод формулы:
Отметим произвольную точку О внутри выпуклого многоугольника и соединим ее с вершинами. Получили n треугольников. Сумма углов одного треугольника равна 180°, а всех треугольников 180°·n.
Угол при вершине О составляет 360°. Отнимем его от суммы углов треугольников и получим сумму углов выпуклого многоугольника:
180°·n - 360° = 180°(n - 2)
(x+3+x+2)×2=78
2x+5=78÷2
2x+5=39
2x=39-5
2x=34
x=34÷2
x=17
тоесть x+3= 17+3=20
x+2=17+2=19
Проверим
(17+3+17+2)×2=78