Смотри рисунок. Диагональ АС делит параллелограмм АВСД на два равных треугольника. Угол ВАС=углу АСД. Так как их разбивают биссектрисы, то углы ВАК=КАС=АСР=РСД. Возьмем во внимание равные углы КАС и АСР ⇒ АК параллельна РС ( здесь углы КАС и АСР будут внутренними накрест лежащими, АС - секущей). Так как ВС параллельна АД (по свойству параллелограмма), то и КС параллельна АР (как стороны, лежащие на ВС и АД соответственно). Параллелограмм - это четырехугольник, у которого противолежащие стороны параллельны, значит АРСК - параллелограмм.
Расстояние от точки до прямой - длина перпендикуляра от этой точки до прямой. Поэтому строим отрезки ЕМ и ЕК. Нужно доказать, что МЕ=КЕ. Рассмотрим прямоугольные треугольники АМЕ и СКЕ. Они равны по одному из признаков равенства прямоугольных треугольников: гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого. В нашем случае АЕ = СЕ, т.к. Е - середина основания АС, углы А и С равны как углы при основании АС равнобедренного треугольника. В равных треугольниках равны и соответственные катеты МЕ и КЕ.
2)осадочные
3)метаморфические