М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Верониккка00
Верониккка00
05.01.2022 17:59 •  Геометрия

1) средняя линия равнобедренного треугольника параллельная основанию равна равна 6 найти площадь треугольника если боковая сторона равна 10 2) в треугольнике со сторонами стороны проведены высоты к этим сторонам, высота проведена к первой стороне которая равна 3 чему равна вторая сторона p.s, можно с картинкой?

👇
Ответ:
dianaryabovaa
dianaryabovaa
05.01.2022
АВС- равнобедреный треугольник,АВ=ВС МЛ - средняя линия.
МК=0,5АС. Знасит АС + 2МК=6*2=12. 
Проведем  высоту ВН,  она будет и медианой. Значит АН=0,5АС=6
Треугольник АВН - прямоугольный. По теореме Пифагора найдем из 
него высоту ВН.   ВН в квадрате=100-36 =64. ВН=8
S=12*8:2=48
Во 2-й задаче не ясно условие
4,4(85 оценок)
Открыть все ответы
Ответ:
Синта
Синта
05.01.2022
Чертеж не обязателен.
а)1 случай.
    40°-угол при вершине,значит углы при основании равны по (180°-40°)÷2=70°
ответ:40°;70°;70°.
    2 случай.
    40°-один из углов при основании,углы при основании равнобедренного треугольника равны,значит угол при вершине равен 180°-(40°×2)=100°
ответ:40°;40°;100°.
б) 1 случай.
   60°-угол при вершине,значит каждый угол при основании равен (180°-60°)÷2=60°
ответ:60°;60°;60°.
      2 случай.
    60°- угол при основании,а углы при основании равнобедренного треугольника равны,значит угол при вершине равен 180°-(60°×2)=60°
ответ:60°;60°;60°.
в) один случай
   100°-угол при вершине,значит каждый угол при основании равен (180°-100°)÷2=40°
ответ:100°;40°;40°.
4,6(79 оценок)
Ответ:
Faleck
Faleck
05.01.2022
Периметр треугольника равен 24. Докажите что расстояние от любой точки плоскости, до хотя бы одной из его вершин больше 4

Решение может быть основано на одном из основных свойств треугольника:
Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a < b + c,  a > b – c;  и так же - для каждой стороны любого треугольника.
Сумма двух сторон данного треугольника  периметра 24 не может быть меньше 12,11111, иначе треугольник не получится.
Поэтому расстояние от любой точки плоскости - независимо от того, вне или внутри треугольника точка-  до хотя бы одной из вершин этого треугольника будет больше половины длины большей его стороны, т.е. больше 4.

Другой доказательства.
Рассмотрим случаи, когда эта точка равноудалена от каждой из вершин, т.е. находится в центре описанной окружности.
Тогда при ее смещении расстояние от нее до хотя бы одной из вершин треугольника будет больше радиуса описанной окружности. 
У остроугольного треугольника центр описанной окружности лежит внутри, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы.
Случай1 - равносторонний треугольник АВС. 
Р=24, 
а=24:3=8.
Возьмем для рассмотрения точку Е - центр описанной окружности вокруг треугольника АВС.
 Расстояние от нее до каждой из вершин является одинаковым.
Высота ( медиана, биссектриса ) равна 
h=a*sin(60)
R=ВЕ=СЕ=СА=h:3*2=2*{(8√3):2}:3=4,6188, 
т.е. больше 4. 
Естественно предположить, что любая другая точка, расположенная внутри АВС, (М, Р, К) будет хотя бы от одной из вершин расположена на расстоянии большем, чем R.
Очевидно, что в случае, когда данная точка находится вне плоскости треугольника, она тем более будет находиться на расстоянии, большем, чем радиус  описанной окружности, т.е. большем, чем 4.

Случай 2 - произвольный треугольник АВС.
Пусть длина его сторон 9, 8 и 7. Центр описанной вокру него окружности находится в точке пересечения срединных перпендикуляров. 
R=abc:4S
Площадь данного  треугольника, найденная по формуле Герона, равна  приблизительно 26, 833 
R=≈4,695, и это больше, чем 4.
Изменение места расположения точки Е приводит к тому, что расстояние до какой-либо из вершин будет больше R, и, естественно, больше 4.
  Для прямоугольного треугольника равное расстояние до вершин будет R=5
Соответственно, если точка Е будет расположена в другом месте плоскости, то и расстояние от нее до хотя бы одной из вершин будет больше. 
ответ:
Расстояние от любой точки плоскости  до хотя бы одной из его вершин треугольника с периметром 24  больше 4, что и требовалось доказать. 
[email protected] 
Периметр треугольника равен 24, докажите что расстояние от любой точки плоскости,до хотя бы одной из
4,4(33 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ