Сумма углов треугольника равна 180°.
В ΔABC:
∠A+∠B+∠C = 180°;
∠B = 180°-(∠A+∠C) = 180°-(60°+40°) = 80°.
Биссектриса делит угол пополам.
∠DBC = ∠ABC:2 = 80°:2 = 40°, как угол при биссектрисе BD.
Если в треугольника два угла равны, то он равнобедренный.
∠DBC = 40° = ∠DCB ⇒ ΔDBC - равнобедренный, ч.т.д.
Стороны треугольника, лежащие напротив равных углов, равны.
В ΔDBC:
сторона BD лежит напротив ∠DCB;
сторона DC лежит напротив ∠DBC;
∠DBC = ∠DCB ⇒ BD = DC.
ответ: BD = DC.
Объяснение:
Наверно , но ты сказал что амне 15дают!
Объяснение:
Если известны длины всех сторон , то высоту найдем по формуле
h = 2/a √p(p-a)(p-b)(p-c),
где h - длина высоты треугольника, p - полупериметр, a - длина стороны, на которую падает высота, b и c - длины двух других сторон треугольника.
1) р=(17+65+80):2=81
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/80 * √(81*64*16*1) = 1/40 * √82944 = 1/40 * 288 = 7,2
2) р=(8+6+4):2=9
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/8 * √(9*1*3*5) = 1/4 * √135 = 1/4 * 3√15= 0,75√15
3) р=(24+25+7):2=28
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/25 * √(28*4*3*21) = 2/25 * √7056 = 2/25 * 84 = 6,72
4) ) р=(30+34+16):2=40
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/34 * √(40*10*6*24) = 1/17 * √57600 = 1/17 * 240 = 1 17/70.