Соединение средин сторон треугольника называется средней линией треугольника. Она расположена параллельно третьей стороне, а длина ее равна половине длины этой стороны. Поэтому можно утверждать, что и стороны меньшего треугольника так же будут относится как 4:3:5.
Так как периметр треугольника, образованного средними линиями равен 3,6 дм, а стороны относятся как 4:3:5, то выразим это следующим образом (Для удобства вычисления переведем все величины в сантиметры 1 дм = 10 см):
4х – длина отрезка АВ;
3х – длина отрезка ВС;
5х – длина отрезка АС;
4х + 3х + 5х = 36;
12х = 36;
х = 36 / 12 = 3;
АВ = 4 · 3 = 12 см;
ВС = 3 · 3 = 9 см;
АС = 5 · 3 = 15 см.
ответ: стороны треугольника, образованного средними линиями равны 12 см = 1,2 дм, 9 см = 0,9 дм, 15 см = 1,5 дм.
19.1. Прямая пересекает окружность. Как называется фигура, яв-
ляющаяся пересечением (общей частью) этой прямой и круга,
ограниченного данной окружностью?
сегмент
19.2. Сколько касательных к данной окружности можно провести
через данную точку, расположенную:
а) внутри окружности;нисколько
б) вне окружности; бесконечно много
в) на окружности? - одну
19.3. Сколько можно провести окружностей, касающихся данной
прямой в данной точке? две (по одной с разных сторон прямой)
19.4. Сколько можно провести окружностей данного радиуса, каса-
ющихся данной прямой в данной точке? две (по одной с разных сторон прямой)
19.5. Какой угол образуют касательная к окружности и радиус,
проведенный в точку касания?
90°
Объяснение: