Расстояние от точки до прямой равно длине перпендикуляра, проведенного из этой точки к данной прямой.
Проведем МН⊥АD.
ВН - проекция наклонной МН и по т. о 3-х перпендикулярах
∠ ВНА=∠BHD=90°
∆ АНВ- прямоугольный с гипотенузой АВ=5 и острым углом А=45°. Сумма острых углов прямоугольного треугольника равна 90°, поэтому угол АВН=45°,⇒
∆ АВН- равнобедренный и ВН=АВ•sin 45º=2,5√2
Угол МВН прямой по условию ( отрезок, перпендикулярный плоскости, перпендикулярен любой прямой, проходящей через его основание).
Из прямоугольного ∆ MВН по т.Пифагора
МН=√(ВН² +ВМ² )=√(12,5+100)=7,5√2 см - это искомое расстояние.
Тогда данный треугольник - равнобедренный.
Пусть а - один из катетов прямоугольного треугольника.
По теореме Пифагора:
a² + a² = 400
a² = 200
a = √200 = 10√2.
Тогда второй катет равен тоже 10√2 см.
P = 2•10√2 см + 20 см = 20(√2 + 1) см.