ответ: 4
Очевидно, что ABC - правильный треугольник.
Из формул зависимости стороны от радиуса вписанной окр. и зависимости высоты от стороны в правильном треугольнике, можно легко вывести зависимость между непосредственно высотой радиусом вписанной окружности:
r=h/3.
проведем касательную к меньшей и большей окружности обозначим точки ее пересечения с AB и AC, как M и N. Также проведем диаметр к стороне BC(он будет совпадать с высотой), тогда оставшаяся часть равна 12. И эта часть является высотой правильного треугольника AMN(т.к. MN и BC параллельны, след. AMN=ANM=BAC=60, след. AMN-правильный). Значит для него работает наша формула r=12/3=4.
Объяснение:
Найдите неизвестные углы параллелограмма ABCD если:
а) угол B= 130°
б) угол A + угол C = 140°
ответ: а) ∠ B = ∠ D =130°
∠ A = ∠ C = °50
- - - - - - - - - - - - - - - -
б ) ∠ A = ∠ C = ( ∠A + ∠ C) / 2 =140°/2 =70° ;
∠ B = ∠ D =180° -∠A =180° - 70° =110 °
Объяснение: Смежные углы параллелограмма в паре дают 180°, а противоположные его углы равны. Таким образом, зная любой один угол параллелограмма, можно найти значения всех остальных углов. α=180°- β
Если даны 2 его стороны, то 12 см - это образующая, а 6 см - диаметр круга в основании конуса (две стороны по 6 см невозможны при третьей в 12 см).
Радиус равен (1/2) диаметра - это 6/3 = 3 см.
Если хорда стягивает дугу в 60°, то она равна радиусу.
Тогда площадь сечения конуса плоскостью, которая проходит через вершину конуса и хорду "а" основания, стягивающую дугу в 60°, равна:
S = (1/2)аН, где Н - высота треугольника в таком сечении.
Н = √12²-3²) = √(144-9) = √135 см.
ответ: S = (1/2)3*√135 = (3/2)√135 ≈ 17,42843 см².