Прямоугольный треугольник с гипотенузой 25 см и проведенной к ней высотой равной 12 см вращается вокруг гипотенузы. Найдите площадь поверхности тела, полученного при вращении.
Решение: АВ=25 см, СН=12 см
Sтела=Sбок.кон(1) + Sбок.кон(2)
h2=ac*bc (высота в прямоугольном треугольнике)
CH2=AH*HB. Пусть AH=x, тогда НВ=25-x.
x(25-x)=122;
x2-25x+144=0;
АН=16 см, НВ=9 см Из ΔАНС по теореме Пифагора АС2=АН2+СН2
АС=20см-(образующая 1)
Sбок.кон(1)=πrl=π*12*20=240π (cм2 )
Из ΔВНС СВ2=СН2+НВ2
CB=15 (см).- (образующая 2).
Sбок.кон(2)=π*12*15=180π (см2).
Sтела=240π +180π=420π (см2)
ответ: 420π см2
Задача 3
Прямоугольная трапеция с основаниями 5 см и 10 см и большей боковой стороной равной 13 см вращается вокруг большего основания. Найдите площадь поверхности тела вращения.
АС=5 см, НК=10см, СК=13 см.
ОК=НК-АС=5 см; l=13 см
Из ΔСОК по теореме Пифагора СО2=СК2-ОК2;
СО=r =12 см;
Sбок.кон=πrl=π*12*13=156π (см2);
Sцил.=2πrh+πr2=2π*12*5+144π=264π (см2);
Sтела= Sбок.кон.+Sцил.= 156π +264π=
=420π (см2);
ответ: 420π см2
Задача 4
Прямоугольная трапеция с основаниями 5 см и
10см и большей боковой стороной равной 13 см вращается
Вокруг меньшего основания. Найдите площадь поверхности
тела вращения. Прямоугольная трапеция с основаниями
5 см и 10 см и большей боковой стороной равной 13 см
вращается вокруг меньшего основания. Найдите площадь
Поверхности тела вращения.
ВС=5 см, АD=10 см,АВ=13 см
Sтела= Sбок.кон.+Sцил(1основание)
Sтела= πrl+2πrh+πr2; АК=АD-ВС=5 (см);
Из ΔАКВ - прямоугольного по теореме Пифагора
КВ2=АВ2-АК2;
КВ=12см – r
AB=l – образующая
h=AD=10 см
Sтела=π*12*13 + 2π*12*10+144π=540π (см2).
ответ: 540π см2
Задача 5.
Равнобокая трапеция с основаниями 4 см и 10 см и
высотой 4 см вращали вокруг большего основания. Найдите
площадь поверхности тела вращения.
АВ=4см, DC=10 см, ВН=4 см
Sтела=2 Sбок.кон.+Sбок.цил.
Sбок.кон=πrl
HC=10-2/2=3.
Из ΔВНС по теореме Пифагора СВ2=СН2+НВ2;
CВ=5 см.-l (образующая).
BH=r=4 cм;
Sбок.кон=π*4*5=20π (см2)
h=HH1=10 – (3+3)=4 см. Sбок.цил.=2πrh=2*4*4*π=32π (см2)
Sтела=40π+32π=72π (см2).
ответ: 72π см2.
Задача 6
Параллелограмм со стороной 3 см и 6 см , острым углом А= 60° вращается вокруг оси, проходящей через вершину острого угла, параллельно высоте параллелограмма. Найти объем полученного тела вращения.
Хорошо! Для решения данной задачи, мы можем использовать несколько методов. Я предлагаю рассмотреть два способа решения - с использованием формулы для площади трапеции и с использованием формулы для площади треугольника.
1. Решение с использованием формулы для площади трапеции:
Для начала, нам необходимо найти высоту трапеции. Высота трапеции - это расстояние между основаниями, перпендикулярное им. Для этого можно воспользоваться теоремой Пифагора.
Мы знаем, что сторона AD равна 10 см, а сторона BC равна 8 см. Воспользуемся теоремой Пифагора:
AB^2 + BC^2 = AC^2
AB^2 + 8^2 = 10^2
AB^2 + 64 = 100
AB^2 = 100 - 64
AB^2 = 36
AB = √36
AB = 6 см
Теперь у нас есть высота трапеции AB, поэтому можем воспользоваться формулой для площади трапеции:
S = ((a + b) * h) / 2
где a и b - длины параллельных оснований, h - высота трапеции.
В нашем случае a = AD = 10 см, b = BC = 8 см, h = AB = 6 см:
S = ((10 + 8) * 6) / 2
S = (18 * 6) / 2
S = 108 / 2
S = 54 квадратных см
Ответ: площадь трапеции равна 54 квадратных см.
2. Решение с использованием формулы для площади треугольника:
Заметим, что треугольник ACD - это прямоугольный треугольник с гипотенузой AC. Мы знаем длины катетов AD и DC (они равны 10 см и 8 см соответственно), а также площадь треугольника ACD (она равна 30 квадратных см).
Теперь мы можем воспользоваться формулой для площади треугольника:
S = (a * b) / 2
где a и b - длины катетов прямоугольного треугольника.
В нашем случае a = AD = 10 см, b = DC = 8 см:
S = (10 * 8) / 2
S = 80 / 2
S = 40 квадратных см
Теперь нам нужно найти площадь трапеции. Трапеция состоит из двух треугольников ACD и BCD, поэтому мы можем сложить их площади:
S(trapezoid) = S(ACD) + S(BCD)
S(trapezoid) = 30 + 40
S(trapezoid) = 70 квадратных см
Ответ: площадь трапеции равна 70 квадратных см.
Я надеюсь, что мое объяснение было подробным и понятным для тебя. Если у тебя есть еще какие-либо вопросы, пожалуйста, не стесняйся задавать их!
Задача 2
Прямоугольный треугольник с гипотенузой 25 см и проведенной к ней высотой равной 12 см вращается вокруг гипотенузы. Найдите площадь поверхности тела, полученного при вращении.
Решение: АВ=25 см, СН=12 см
Sтела=Sбок.кон(1) + Sбок.кон(2)
h2=ac*bc (высота в прямоугольном треугольнике)
CH2=AH*HB. Пусть AH=x, тогда НВ=25-x.
x(25-x)=122;
x2-25x+144=0;
АН=16 см, НВ=9 см Из ΔАНС по теореме Пифагора АС2=АН2+СН2
АС=20см-(образующая 1)
Sбок.кон(1)=πrl=π*12*20=240π (cм2 )
Из ΔВНС СВ2=СН2+НВ2
CB=15 (см).- (образующая 2).
Sбок.кон(2)=π*12*15=180π (см2).
Sтела=240π +180π=420π (см2)
ответ: 420π см2
Задача 3
Прямоугольная трапеция с основаниями 5 см и 10 см и большей боковой стороной равной 13 см вращается вокруг большего основания. Найдите площадь поверхности тела вращения.
АС=5 см, НК=10см, СК=13 см.
ОК=НК-АС=5 см; l=13 см
Из ΔСОК по теореме Пифагора СО2=СК2-ОК2;
СО=r =12 см;
Sбок.кон=πrl=π*12*13=156π (см2);
Sцил.=2πrh+πr2=2π*12*5+144π=264π (см2);
Sтела= Sбок.кон.+Sцил.= 156π +264π=
=420π (см2);
ответ: 420π см2
Задача 4
Прямоугольная трапеция с основаниями 5 см и
10см и большей боковой стороной равной 13 см вращается
Вокруг меньшего основания. Найдите площадь поверхности
тела вращения. Прямоугольная трапеция с основаниями
5 см и 10 см и большей боковой стороной равной 13 см
вращается вокруг меньшего основания. Найдите площадь
Поверхности тела вращения.
ВС=5 см, АD=10 см,АВ=13 см
Sтела= Sбок.кон.+Sцил(1основание)
Sтела= πrl+2πrh+πr2; АК=АD-ВС=5 (см);
Из ΔАКВ - прямоугольного по теореме Пифагора
КВ2=АВ2-АК2;
КВ=12см – r
AB=l – образующая
h=AD=10 см
Sтела=π*12*13 + 2π*12*10+144π=540π (см2).
ответ: 540π см2
Задача 5.
Равнобокая трапеция с основаниями 4 см и 10 см и
высотой 4 см вращали вокруг большего основания. Найдите
площадь поверхности тела вращения.
АВ=4см, DC=10 см, ВН=4 см
Sтела=2 Sбок.кон.+Sбок.цил.
Sбок.кон=πrl
HC=10-2/2=3.
Из ΔВНС по теореме Пифагора СВ2=СН2+НВ2;
CВ=5 см.-l (образующая).
BH=r=4 cм;
Sбок.кон=π*4*5=20π (см2)
h=HH1=10 – (3+3)=4 см. Sбок.цил.=2πrh=2*4*4*π=32π (см2)
Sтела=40π+32π=72π (см2).
ответ: 72π см2.
Задача 6
Параллелограмм со стороной 3 см и 6 см , острым углом А= 60° вращается вокруг оси, проходящей через вершину острого угла, параллельно высоте параллелограмма. Найти объем полученного тела вращения.
Vт=Vук – Vк; Vук=1/3П h(R2+R12+RR1); Vк=1/3ПR2h; угол D=A, угол СDC1=60°, ∆CC1D – равносторонний, СС1=6см, Rк=3см, h