• На данном рисунке 6 - это длина рёбра основания, 4 - высота и одновременно медиана (так как исходный треугольник в основании - равнобедренный), половина равна 3, рассмотрим один из треугольников, которые получаются разделением медианы (равной 4), по обратной теореме Пифагора - треугольник прямоугольный, сторона равна:
a = √(4² + 3²) = √25 = 5 (а - боковая сторона равнобедренного треугольника, лежащего в основании)
• Рассмотрим треугольник, в котором угол равен 60°, а нижняя часть, как мы нашли, равна 5, сам треугольник прямоугольный, поэтому:
tg60° = x/5
x - боковое ребро
x = tg60° • 5 = 5√3
• Sполн. = Sбок. + 2Sосн.
Sбок. = Pосн. • h = (5+5+6) • 5√3 = 16 • 5√3 = 80√3
Sосн. = 6 • 4 • ½ = 12
Sполн. = 80√3 + 12
Abdent Середнячок
Прямоугольник - частный случай параллелограмма, тогда , пусть биссектриса AM. Углы Bma и dam - накрест лежащие при параллельных прямых bc и ad, а значит они равны, тогда, угол dam= углу bam , т.к. Am бисскетриса.
Тогда рассмотрим треугольник abm , у него угол bam = углу bma. А это углы при осоновании, значит , треугольник abm равнобедренный и bm=ab=8см ( по условию)
Т.к. abcd- параллелограмм , то ab=cd и dc=ad. ( свойство параллелограмма.
bm+mc= bc= 8+8=16см=ad
ab=bm=8см=cd
Периметр= 16+16+8+8=48
ответ : 48см
a*5=60
a=60/5=12
b*10=60
b=60/10=6
ответ 6см и 12см