Изначально так:///Пусть задана окружность ω (A; R) на плоскости Oxy, где точка A, центр окружности – имеет координаты a и b. ..Таким образом, координаты x и y любой точки окружности ω (A; R) удовлетворяют уравнению (x – a)^2 + (y – b)^2 = R^2./// Раскрыть скобки, получить х^2-2ах+а^2+у^2-2ву-в^2=R^2Преобразовав чуток поиметь своё выражение. Теперь в обратную:х^2+y^2+6х-8у=х^2+2*х*3+3^2-3^2 +у^2-2*у*4+4^2-4^4 = (х+3)^2 + (у-4)^2 ...Остальные цифири - в R^2 или ещё как, судя по недопечатанности хвостика вопроса вашего.Суть решения - из общей строки многочлена вытащить квадрат суммы/разности при "х", и квадрат суммы/разности при у.Остальное - как уж получится.Ага?
в треугольник АВС вписана окружность с центром О, точка К на АВ - касание окружности, точка Л на ВС, точка М на АС, дугаМК/дугаКЛ/дугаЛМ=10/11/15=10х/11х/15х, окружность=10х+11х+15х=36х=360 , х=10, дугаМК=10*10=100, дугаКЛ=10*11=110, дуга ЛМ=10*15=150, провоим перпендикулярные радиусы в точки касания, ОК=ОЛ=ОМ, уголКОМ центральный=дуге МК=100, уголКОЛ=110, уголЛОМ=150, четырехугольник АКОМ два угла по 90, уголКОМ=100, тогда уголА=360-90-90-100=80, также и вдругих четырехугольниках, уголВ=360-90-90-110=70, уголС=360-90-90-150=30