М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
новичок624
новичок624
20.02.2020 15:35 •  Геометрия

Из точки a к плоскости альфа проведены наклонные ab и ac ,образующие с плоскостью угол 60 градусов.известно что bc=aс=6. найдите ав.

👇
Ответ:
ychviviv
ychviviv
20.02.2020
Проведем АО⊥α.
ОВ и ОС - проекции наклонных АВ и АС на плоскость α. Тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6
4,4(58 оценок)
Открыть все ответы
Ответ:
Anonim223332
Anonim223332
20.02.2020

На рисунке обозначены:

ABC - Основание пирамиды

OS - Высота

KS - Апофема

OK - радиус окружности, вписанной в основание

AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды

SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)

Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).

Свойства правильной треугольной пирамиды:

боковые ребра правильной пирамиды равны

все боковые грани правильной пирамиды являются равнобедренными треугольниками

в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу

если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).

площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему

вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан

4,7(8 оценок)
Ответ:
Так как окружность касается оси 0X (дано), то
центр окружности находится в точке с координатами О(Xo;R).
Уравнение окружности:
(X-Xo)²+(Y-R)²=R² или в нашем случае
X²-2X*Xo+Xo²+Y²-2R*Y+R²=R² или
X²-2X*Xo+Xo²+Y²-2R*Y=0.
Обе точки должны удовлетворять этому уравнению или
49-14Xo+Xo+64-16R=36-12Xo+Xo+81-18R. Отсюда
Xo=R-2 (координата центра).
То есть центр лежит в точке О(R-2;R).
Тогда уравнение нашей окружности примет вид:
для точки (7;8)
(9-R)²+(8-R)²=R² или
R²-34R+145=0. Решаем квадратное уравнение и получаем
R1=17+√(17²-145) = 17+12=29.
R2=17-12=5
Тогда искомое уравнение:
(X-3)²+(Y-5)²=25. (первый вариант).
(X-27)²+(Y-29)²=841. (второй вариант).

Оба уравнения представляют окружности, пересекающиеся в точках
(7;8) и (6;9).

Составить уравнение окружности, касающейся оси абсцисс проходящей через точки (7; 8) и (6; 9).
4,7(80 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ