№2
если В треугольнике медина является биссектрисой, то такой треугольник равнобедренный:
АВ=ВС; АД=ДС(т к ВД - медиана) =>
АВ+АД=ВС+ДС;
Равс=АВ+АД+ВС+ДС=2(АБ+АД)
АБ+АД=Рабд-ВД=11см;
Равс=2*11=22
ответ: 22 см
№3
Такого треугольника не существует, так как периметр не может быть мень суммы двух сторон треугольника(7<5+3)
ответ: нет решения
№4
Высота, проведенная к основанию равнобедренного треугольника, является биссектрисой => ВАК=ВАС/2=23. ВКА=90(т к АК-высота)
ответ: 23, 90
№5
Наверняка вместе с условием к этой задаче прилагался готовый чертеж, так как без него ее не решить, ведь я не могу знать какой именно угол 1, а какой 2
№6
По теореме о сумме углов в треугольнике:
АСВ=180-МВС-МАС=180-90=90
ответ: 90
№7
Это тупоугольный треугольник
№8
Пусть медиана и биссектриса пересекаются в точке О
треугольники ВАО и МАО прямоугольные так как АД перпендикулярна ВМ, в них
ВАО=МАО(АД-биссектриса)
АО - общий => МОА=ВОА по катету и острому углу => АВ=АМ=АС/2=6см
ответ: 6 см
№2
если В треугольнике медина является биссектрисой, то такой треугольник равнобедренный:
АВ=ВС; АД=ДС(т к ВД - медиана) =>
АВ+АД=ВС+ДС;
Равс=АВ+АД+ВС+ДС=2(АБ+АД)
АБ+АД=Рабд-ВД=11см;
Равс=2*11=22
ответ: 22 см
№3
Такого треугольника не существует, так как периметр не может быть мень суммы двух сторон треугольника(7<5+3)
ответ: нет решения
№4
Высота, проведенная к основанию равнобедренного треугольника, является биссектрисой => ВАК=ВАС/2=23. ВКА=90(т к АК-высота)
ответ: 23, 90
№5
Наверняка вместе с условием к этой задаче прилагался готовый чертеж, так как без него ее не решить, ведь я не могу знать какой именно угол 1, а какой 2
№6
По теореме о сумме углов в треугольнике:
АСВ=180-МВС-МАС=180-90=90
ответ: 90
№7
Это тупоугольный треугольник
№8
Пусть медиана и биссектриса пересекаются в точке О
треугольники ВАО и МАО прямоугольные так как АД перпендикулярна ВМ, в них
ВАО=МАО(АД-биссектриса)
АО - общий => МОА=ВОА по катету и острому углу => АВ=АМ=АС/2=6см
ответ: 6 см
б) Переносим параллельным переносом вектор DA так, чтоб его начало было в точке А.
Тогда угол между векторами DA и AB равен 90° + 45° = 135°;
в) ∠(OA, OB) = 90°, т.кю угол между диагоналями квадрата равен 90°;
г) (тут то же самое, что и под буквой в);
д) Аналогично ∠(OA, OC) = 90°, т.к. угол между диагоналями равен 90°;
е) Векторы AC и BD сонаправлены, значит, угол между ними равен 0°.
ж) Переносим вектор DB параллельным переносом так, чтоб его начало совпадало с точкой А.
Тогда ∠(AD, DB) = 135°.
з) Переносом вектор OC параллельны переносом так, чтоб его начплао совпадало с точкой А.
Угол между векторами остался таким жеч как и угол между диагоналями, т.е. 90°.