1) чертим Δ АВС -равносторонний. То есть все стороны одинаковы и равны 18 см. , все углы по 60 градусов; 2) точка В делит сторону АС пополам, то есть АВ1=СВ1=9см. 3) Проводим В1Д // ВС и В1Е // АВ; 4) рассматриваем Δ АВС и Δ АДВ1. Они подобны. Стало быть, все стороны одного пропорциональны сходственным сторонам другого. 5) Сторона АВ1 Δ АДВ1 вдвое меньше стороны АС Δ АВС и равна 18/2=9(см.) ; 6) и сторона В1Д вдвое меньше стороны ВС и равна 18/2=9(см.) ; 7) и сторона АД вдвое меньше стороны АВ и равна 18/2=9(см.) ; 8) Тогда ВД=АВ-АД=18-9=9(см) . 9) В итоге получается, что В1Е =9 см, ВЕ=9см, а сумма всех сторон четырёхугольника ВЕВ1Д равна 4*9=36см. 10 ответ: периметр образовавшегося четырёхугольника равен 36 см.
Пусть боковая сторона равнобедренного треугольника - b; тогда по теореме синусов: b/Sin75°=2R; b=2R*Sin75°; b=2*8*Sin75°=16*Sin75°; Sin75°=Sin(30°+45°)= Sin30°*Cos45°+Cos30°*Sin45°= 0,5*0,5*√2+0,5*√3*0,5*√2= 0,25*(√2+√6); b=16*0,25(√2+√6)=4(√2+√6); Площадь равнобедренного треугольника равна половине произведения боковых сторон на синус угла между ними (угол между боковыми сторонами равен 180-2*75=30°); S=b*b*Sin30°/2=0,25*b^2; S=0,25*(4(√2+√6))^2=0,25*16*(√2+√6)^2= 4*(2+2√12+6)=4*(8+2√12)=8*(4+√12) ответ: 8(4+√12)
2) точка В делит сторону АС пополам, то есть АВ1=СВ1=9см.
3) Проводим В1Д // ВС и В1Е // АВ;
4) рассматриваем Δ АВС и Δ АДВ1. Они подобны.
Стало быть, все стороны одного пропорциональны сходственным сторонам другого.
5) Сторона АВ1 Δ АДВ1 вдвое меньше стороны АС Δ АВС и равна 18/2=9(см.) ;
6) и сторона В1Д вдвое меньше стороны ВС и равна 18/2=9(см.) ;
7) и сторона АД вдвое меньше стороны АВ и равна 18/2=9(см.) ;
8) Тогда ВД=АВ-АД=18-9=9(см) .
9) В итоге получается, что В1Е =9 см, ВЕ=9см, а сумма всех сторон четырёхугольника ВЕВ1Д равна 4*9=36см.
10 ответ: периметр образовавшегося четырёхугольника равен 36 см.