По определению площадь параллелограмма: S=ah, где а - большая сторона, а h - высота.
Найдём h. Если у нас параллелограмм ABCD ( буквы расставлены с нижней левой выршины и далее по часовой стрелке ), то проведём из вершины B перпендикуляр на AD, получим отрезок BH - это и есть высота (h). Далее из прямоугольного треугольника ABH найдём BH. Т.к. угол между сторонами равен 150 градусов ( Это угол ABC ), то угол BAD будет равен 30 градусам. Синус этого угла будет равен: sin30=BH/AB ( т.к. синус угла в прямоугольном треугольнике равен отношению противолежащего катета к гипотенузе ) , откуда BH=ABsin30. Теперь мы знаем высоту и сторону => можем найти площадь. Подставим полученные значения в формулу для площади и получим: S=BC*AB*sin30=7*4*1/2=14 (см^2).
Развёрткой боковой поверхности цилиндра служит прямоугольник, диагональ которого, равная 12пи, составляет с одной из сторон угол 30 градусов
диагональ боковой поверхности цилиндра d=12пи
высота цилиндра h=d*sin30=12pi*1/2=6pi <высота равна меньшей стороне развёртки
большая сторона развертки b=d*cos30=12pi*√3/2=6pi√3
большая сторона развертки b - это длина окружности ОСНОВАНИЯ b=2pi*R
радиус основания R=b/(2pi) = 6pi√3 / (2pi)=3√3
площадь основания So=pi*R^2 = pi*(3√3)^2=27pi <два основания
площадь боковой Sb=b*h=6pi√3*6pi=36pi^2√3
площадь полной поверхности цилиндра S=Sb+2So=36pi^2√3+2*27pi=36pi^2√3+54pi
ОТВЕТ
36pi^2√3+54pi
36√3pi^2+54pi
18pi (2√3pi+3)
** возможны другие варианты ответа
Обозначим КО = 2х. а МО = х.
Тогда по Пифагору 40² = х²+(2х)².
5х² = 1600,
х² = 1600/5 = 320,
х = √320 = 8√5.
Точка О делит медианы в отношении 2:1 от вершины.
Находим МО = 8√5, КО = 2*8√5 = 16√5.
Отрезок ОК1 по свойству медианы равен 1/2 КО и равен 8√5.
То есть, треугольник МОК1 - прямоугольный равнобедренный.
МК1 = К1N = x√2 = 8√5*√2 = 8√10, а сторона MN = 2*8√10 = 16√10.
Последнюю неизвестную сторону находим по теореме синусов.
Находим угол MКO.
tg<MKO = x/2x = 1/2.
<MKO = arc tg(1/2) = 0,463648 радиан = 26,56505°.
Находим угол ОКМ1. OM1 = (1/2)MO = 8√5/2 = 4√5.
tg<ОКМ1 = ОМ1/OK = 4√5/16√5 = 1/4.
<ОКМ1 = arc tg(1/4) = 0,244979 радиан = 14,03624°.
Угол К равен сумме МКО и ОКМ1:
<К = 26,56505° + 14.03624° = 40,60129°.
Находим угол N.
sin N/40 = sin K/(16√10),
sin N = 40*sin K/16√10 = 40* 0,650791/16√10 = 0,514496.
Угол N = arc sin 0,514496 = 0,54042 радиан = 30,96376°.
Угол В = 180°-<K-<N = 180°- 40,60129° - 30,96376° = 108,4349°.
KN = sin M*40/sin N = 0,948683*40/0,514496 = 73,75636.
Периметр треугольника равен 164,3528026.