М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Втрапеции авсd основание аd вдвое больше основание вс и вдвое больше боковой стороны сd. угол adc равен 60°, сторона ав равна 4. найдите площадь трапеции.

👇
Ответ:
ОдиннидО
ОдиннидО
15.02.2023
Площадь трапеции 48 квадратных см
Втрапеции авсd основание аd вдвое больше основание вс и вдвое больше боковой стороны сd. угол adc ра
4,4(96 оценок)
Открыть все ответы
Ответ:
popovaviktoriy3
popovaviktoriy3
15.02.2023

ответПусть дан отрезок АС.  

Чтобы с линейки и циркуля построить его середину М, нужно:

1) Из А и С как из центров циркулем провести равные  окружности радиусом несколько больше половины этого отрезка,( на глаз это определить несложно), чтобы они могли пересечься.  

2) Окружности пересекутся по обе стороны от АС. в точках В и Д ( можно обозначить иначе).  

Соединить точки пересечения окружностей.  

3) ВД пересечет АС в т.М, которая и является серединой данного отрезка АС.  

------

Доказательство.

АВ=ВС=СД=ДА=ВК  – радиусы равных окружностей =>  

АВСД  - ромб, АС и ВД его диагонали. Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. =>АМ=МС,  

Середина М отрезка АС построена.


МНЕ Построить середину отрезка АВ и отложить на сторонах острого угла(циркулем)
4,7(85 оценок)
Ответ:
Fidjit
Fidjit
15.02.2023
В формулировке теоремы можно выделить исходные данные (посылку, предпосылки) , и вывод. 

В обратной теореме вывод и посылка меняются местами. 

Это получается правильно в тех случаях, когда имеется однозначное соответствие между посылкой и выводом, то есть первое без второго не бывает, как и второе без первого. 

Но есть случай формулировки когда отсутствию первого всегда соответствует отсутствие второго. Это тоже один из вариантов формулировки обратной теоремы - противоположная теорема. 
И при этом также есть взаимно однозначное соответствие. 
В обеих теоремах должен реализоваться принцип необходимости и достаточности. 
Свойства о которых говорится в посылке необходимы и достаточны для наличия свойств оо которых говорится в выводе, и наоборот. 
Это и есть вхзаимное соответстствие. 

 
Обратная теорема 

Обратная теорема, теорема, условием которой служит заключение исходной (прямой) теоремы, а заключением — условие. Обратной к О. т. будет исходная (прямая) теорема. Таким образом, прямая и О. т. взаимно обратны. Например, теоремы: "если два угла треугольника равны, то их биссектрисы равны" и "если две биссектрисы треугольника равны, то соответствующие им углы равны" — являются обратными друг другу. Из справедливости какой-нибудь теоремы, вообще говоря, не следует справедливость обратной к ней теоремы. Например, теорема: "если число делится на 6, то оно делится на 3" — верна, а О. т. : "если число делится на 3, то оно делится на 6" — неверна. Даже если О. т. верна, для её доказательства могут оказаться недостаточными средства, используемые при доказательстве прямой теоремы. Например, в евклидовой геометрии верны как теорема "две прямые на плоскости, имеющие общий перпендикуляр, не пересекаются", так и обратная к ней теорема "две непересекающиеся прямые на плоскости имеют общий перпендикуляр". Однако вторая (обратная) теорема основывается на евклидовой аксиоме параллельных, тогда как для доказательства первой эта аксиома не нужна. В Лобачевского геометрии вторая просто неверна, тогда как первая остаётся в силе. О. т. равносильна теореме, противоположной к прямой, т. е. теореме, в которой условие и заключение прямой теоремы заменены их отрицаниями. Поэтому прямая теорема равносильна теореме, противоположной к обратной, т. е. теореме, утверждающей, что если неверно заключение прямой теоремы, то неверно и её условие. Известный "доказательства от противного" как раз и представляет собой замену доказательства прямой теоремы доказательством теоремы, противоположной к обратной. Справедливость обеих взаимно обратных теорем означает, что выполнение условия любой из них не только достаточно, но и необходимо для справедливости заключения 
4,6(12 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ