Если известны стороны! Проведем две медианы к боковым сторонам треугольника. Так как он равнобедренный, медианы эти равны и отсекают от исходного треугольника два меньших, равных между собой. Угол при основании неизвестен, поэтому обозначим его α и его косинус - cosα Выразим медиану одного из образовавшихся треугольников по теореме косинусов. Чтобы найти косинус угла при основании, применим теорему косинусов к данному в условии задачи треугольнику, стороны которого известны. Подставив найденное значение cosα в уравнение медианы, найдем ее длину.
Обозначим прямоугольник буквами ABCD. AD=10 см. Тогда биссектриса угла А делит сторону CD на равные отрезки DF и CF. Угол D=90*, а угол DAF=45* (90:2, биссектриса делит угол пополам). По теореме о сумме углов в треугольнике угол AFD=180-(90+45)=45. И раз углы DAF и AFD равны, а они являются углами при основании треугольника ADF, следовательно, он равнобедренный. Тогда AD=DF=10 см. А раз DF=FC=10, то вся сторона DC=10+10=20 см. Противолежащая ей сторона AB также равна 20 см. И сторона BC=10 см. Итого P=10+10+20+20=60 см.
18ВС=45*10
18ВС=450
ВС=450:18=25
Следовательно:ВС=25