М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fox359
fox359
22.03.2021 16:04 •  Геометрия

Докажите, что сумма расстояний от любой точки основания равнобедренного треугольника до его боковых сторон равна высоте треугольника, проведённой к его боковой стороне.

👇
Ответ:
Хфк
Хфк
22.03.2021
Пусть T - произвольная точка, взятая на основании AB.
Проведём отрезок СT.
S_{TCB} = \frac{1}{2}TK*CB
S_{ACT} = \frac{1}{2} LT*AC
S_{ABC} = \frac{1}{2}AC*BH
Но также по свойству площадей: 
S_{ABC} = S_{TCB} + S_{ACT}
Учитывая то, что у равнобедренного треугольника боковые стороны равны, т.е. AC = CB, получим:
\frac{1}{2} AC*BH = \frac{1}{2}AC*LT+ \frac{1}{2} AC*TK \\ AC*BH = AC*(LT + TK) 

\boxed{BH = LT + TK}, что и требовалось доказать.

Докажите, что сумма расстояний от любой точки основания равнобедренного треугольника до его боковых
4,8(14 оценок)
Открыть все ответы
Ответ:
макс13372004
макс13372004
22.03.2021

Объяснение:

Определение

Геометрическим местом точек (сокращенно — ГМТ), обладающих некоторым свойством, называется множество всех точек, которые обладают этим свойством.

Решение задачи на поиск ГМТ должно содержать доказательство того, что все точки множества , указанного в ответе, обладают требуемым свойством, а также наоборот, что все точки, обладающие требуемым свойством, лежат в этом множестве .

Приведем классические и важнейшие известные примеры ГМТ.

Пример

Геометрическое место точек, удаленных от данной точки на заданное положительное расстояние, — окружность (это определение окружности).

Пример

Геометрическое место точек, равноудаленных от данной прямой, — две параллельные прямые.

Пример

Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку.

 

Пример

Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.

Два последних примера будут рассмотрены детально в разделах "Серединный перпендикуляр" и "Биссектриса".

Утверждение

ГМТ, обладающих двумя свойствами, является пересечением двух множеств: ГМТ, обладающих первым свойством, и ГМТ, обладающих, вторых свойств

4,4(81 оценок)
Ответ:
DIANA89320
DIANA89320
22.03.2021

Объяснение:

Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого

4,5(71 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ