М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
adelya63Ada
adelya63Ada
30.04.2020 06:16 •  Геометрия

Втреугольнике mkp углы m и p равны. точка e -середина стороны kp, mp=22 см. разность периметров треугольников mke и mep равна 13 см. найдите стороны mk и pk. 20

👇
Ответ:
yliana121
yliana121
30.04.2020

Точка Е - середина КР⇒ КЕ=РЕ.

МЕ входит в периметры как ∆ МКЕ, так и ∆ МЕР, 13 см,  поэтому на самом деле 13 см - это разность между (МК+КЕ) и (МР+РЕ).

Вариант а) МР< МК+КЕ 

Пусть КЕ=ЕР=а. Тогда МК=2а

(2а+а)-(22+а)=13⇒ 2а-22=13⇒2а=35 см

МР=МК=35 см

---------

Вариант б) МР+ЕР > МК+ЕК

22+а-3а=13⇒2а=9 см

2а=9. В этом варианте не соблюдается неравенство треугольника, где наибольшая сторона треугольника не может быть больше  суммы двух других сторон или быть равна ей.

Следовательно,  боковые стороны этого треугольника равны 35 см


Втреугольнике mkp углы m и p равны. точка e -середина стороны kp, mp=22 см. разность периметров треу
4,4(44 оценок)
Открыть все ответы
Ответ:
KiskaSofia
KiskaSofia
30.04.2020
Введем дополнительные обозначения:
Пусть окружность касается стороны CD в точке К, ОЕ1 и ОЕ2 - высоты трапеции АОQD
a) по условию АВ-диаметр окружности, значит АО=ОВ=R
ABCD - равнобедренная трапеция, следовательно ∠ВАD=∠CDA и AB=CD=2R 
Если Q - середина CD, то ОQ - средняя линия трапеции. Следовательно AO=OB=CQ=QD=R
Также АО=ОН=R, то есть ΔАОН-равнобедренный, значит 
∠ВАD=∠OHA
При этом ∠ВАD=∠CDA, следовательно ∠OHA=∠CDA, значит эти углы соответственные при параллельных прямых ОН и DQ и секущей АD.
Итак, ОН=QD и ОН || QD, следовательно DQOH-параллелограмм.

б) ∠ВАD=∠OHA=60°
∠АОН=180°-(∠ВАD+∠OHA)=180°-(60°+60°)=60° - ΔАОН - равносторонний, следовательно АН=R
∠ABC=∠BCD=180°-60°=120°
Если окружность касается CD, то ∠OKC=90° и ОК=R 
Сумма всех углов в четырехугольнике равна 360°
∠ВОК=360°-(∠ОВС+∠OKC+∠DCK)=360°-(120°+90°+120°)=30°
Если ОQ -средняя линия трапеции, то OQ || AD, следовательно
∠BAD=∠BOQ=60°
∠KOQ=∠BOQ-∠ВОК=60°-30°=30°
ΔOQK -прямоугольный с прямым углом OKQ
cos30= \frac{OK}{OQ} \\ \frac{ \sqrt{3} }{2} = \frac{R}{OQ} \\ OQ= \frac{2R}{ \sqrt{3} }
OQ=HD- так как DQOH-параллелограмм
AD=AH+HD=R+ \frac{2R}{ \sqrt{3} }
средняя линия трапеции =(а+в)/2
OQ=( BC+AD )/2 \\ \frac{2R}{ \sqrt{3} } =(2+R+ \frac{2R}{ \sqrt{3} }) /2= \frac{2 \sqrt{3}+R \sqrt{3}+2R}{ \sqrt{3}} /2 \\ \frac{2R}{ \sqrt{3} }=\frac{2 \sqrt{3}+R \sqrt{3}+2R}{ 2\sqrt{3}}|*2 \sqrt{3} \\ \\ 4R=2\sqrt{3} +R\sqrt{3} +2R \\ 2R-R\sqrt{3} =2\sqrt{3} \\ R(2-\sqrt{3} )=2\sqrt{3} \\ \\ R= \frac{2\sqrt{3} }{2-\sqrt{3} } = \frac{2\sqrt{3}(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}= \frac{4\sqrt{3}+2*3}{2 ^{2} -\sqrt{3}^{2} } = \frac{4\sqrt{3}+6}{4-3 }=4\sqrt{3}+6
AD=AH+HD=R+ \frac{2R}{ \sqrt{3} } =R+\frac{2R \sqrt{3} }{\sqrt{3}*\sqrt{3}} = \frac{3R}{3} + \frac{2\sqrt{3}R}{3} = \frac{3R+2\sqrt{3}R}{3} = \\ \frac{3(4\sqrt{3}+6)+2 \sqrt{3} (4\sqrt{3}+6)}{3} = \frac{12 \sqrt{3}+18+24+12 \sqrt{3} }{3} = \frac{24 \sqrt{3}+42 }{3} =8 \sqrt{3} +14 \\ OTBET: 8 \sqrt{3} +14

Решите,мне нужно с рисунком. ☺дана равнобедренная трапеция abcd с основаниями ad и bc. окружность с
4,8(15 оценок)
Ответ:
XMuhamedKinggX
XMuhamedKinggX
30.04.2020

Основания - правильные треугольники. О₁ - центр верхнего основания (точка пересечения медиан (биссектрис, высот)), О - центр нижнего основания.

Пусть Н - середина В₁С₁, тогда О₁Н - радиус окружности, вписанной в треугольник А₁В₁С₁.

  О₁Н = а√3/6 = 6√3/6 = √3 см

Пусть К - середина ВС, тогда ОК - радиус окружности, вписанной в треугольник АВС:

   ОК = 12√3/6 = 2√3 см.

ОО₁ - высота пирамиды, тогда

ОО₁⊥ВС и АК⊥ВС, т.е. ребро ВС перпендикулярно двум пересекающимся прямым плоскости АКН, значит

ВС⊥(АКН)

Тогда ВС⊥КН, ∠НКА = 30° и НК - апофема пирамиды.

Sбок = (P₁ + P₂) · HK, где P₁ и P₂ - периметры оснований.

Осталось найти НК.

ОО₁НК - прямоугольная трапеция. Проведем в ней высоту НТ.

ОО₁НТ - прямоугольник, ОТ = О₁Н = √3 см

ТК = ОК - ОТ = 2√3 - √3 = √3 см

ΔНТК:    cos 30° = TK / HK

               HK = TK / cos 30° = √3 / (√3/2) = 2 см

Sбок = (P₁ + P₂) · HK = (6 ·3 + 12 · 3) · 2 = (18 + 36) · 2 = 54 · 2 = 108 см²

4,7(61 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ