ответ: 432π
Объяснение: обозначим радиус r, a высоту h. Если r/h=1/2, то: h=2r. 2 радиуса
- это диаметр, и диаметр основания равен высоте. Высота, радиус и диагональ осевого сечения цилиндра образуют равнобедренный прямоугольный треугольник, в котором диаметр основания и высота являются катетами а диагональ гипотенузой. В равнобедренном прямоугольном треугольнике гипотенуза больше катета в √2 раз, поэтому h=диаметру=12√2/√2=
=12, тогда радиус=12/2=6
Найдём площадь основания по формуле:
Sосн=πr²=π×6²=36π
Теперь найдём объем цилиндра зная его площадь основания и высоту по формуле: V=Sосн×h=36π×12=432π(ед³)
Сторона правильного шестиугольника равна радиусу Описанной около него окружности. Соединим концы стороны шестиугольника с центром окружности. Получим правильный треугольник. Площадь правильного треугольника равна S=(√3/4)*R². Таких треугольников 6.
В нашем случае S=6√3дм².
Или:
Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне. Высота правильного треугольника по Пифагору равна √(а²-а²/4)=а√3/2.
Тогда его площадь равна S=(1/2)*a*a√3/2 или S=a²√3/4. Вот мы и вывели формулу. далее, как уже было сказано: площадь шести таких треугольников равна а²√3*3/2. а=2дм. S=6√3дм²
ответ: S=6√3 дм²