1. Если принять значение первого угла за одну часть общего угла, соответственно второй угол будет равен четырем частям (из условия задачи), следовательно 4-1=3, а по условию задачи, их разница равна 108. Теперь делим 108 на 3, получаем, что одна часть общего угла равна 36 градусам, следовательно первый угол будет равен 36 градусам (1*36), а второй 144 градуса (4*36). В сумме, они дают 180 градусов, из чего можно сделать вывод, что прямые, которые пересекает прямая, образующая эти углы, параллельны между собой.
2. Углы АВС и ВСД равны, так как они накрест лежащие. Отсюда делаем вывод, что треугольники АВС и ВСД равны по двум сторонам (АВ=СД и СВ - общая) и углу между ними.
По теореме косинусов :
AC² =AB² +BC² -2AB*BC *cosB =5² +6² -2*5*6*cosB = 61 - 60*cosB.
Определим cosB.
S = (1/2)*AB*BC*sinB ⇒ sinB =2S/(AB*BC) = 2*12 / 5*6 = 4/5,
следовательно : cosB = ± √ (1-sin²C) =± √ (1-(4/5)/² ) = ± 3/5.
a) ∠B _острый ⇒ cosB = 3/5.
AC² = 61 - 60*cosB = 61 - 60*(3/5) =25 ⇒ AC =5.
* * *AC =AB , ∆ABС - равнобедренный * * *
медиана к стороне AC:
BM=(1/2)√(2(AB² +BC²)-AC²) =(1/2)√(2(5² +6²) -5² )=(1/2)√(2(5² +6²)-5²) =
=√97 / 2 .
или
b) ∠B _тупой , т.е. cosB = - 3/5
AC² = 61 - 60*cosB =61 - 60*( -3/5) = 61 + 60*(3/5) =97 ⇒ AC =√97.
BM=(1/2)√(2(AB² +BC²) -AC²) =(1/2)√(2(5² +6²) -97)=(1/2)*5 =
=2,5.