Восновании пирамиды mabc лежит треугольник abc, у которого ав=а и угол асв=150°. боковые ребра наклонены к основанию под углом 45°. найдите высоту пирамиды.
Найдем <B.Из теоремы о сумме углов тр-ка он равен 75 градусам. По теореме синусов имеем,что CB/sinA=AC/sinB=AB/sinC. Значит, AC=(CB*sinB)/sinA=(2 корня из 3 * sin 75)/корень из 3/2=(2 корня из 3 *2*sin75)/корень из 3 (далее корень из трех сокращается)=4 sin75,что приблизительно равно 3,8636. Аналогично рассуждая, получаем,что AB=(CB*sinC)/sinA=4/корень из 2,избавившись от иррациональности в знаменателе,получим,что AB=2 корням из 2. Для нахождения площади воспользуемся формулой S=1/2 AB*AC*sinA=(2 корня из 2 *3,8636)2*корень из 3/2=(двойки сокращаются)=корень из 2 *3,8636*корень из 3/2.Если очень хочется,то можно сократить 3,8636 и 2, тогда получится 1,9318*корень из 2*корень из 3. ответ:2 корня из 2;3,8636;1,9318*корень из 2*корень из 3;75 градусов.
1. ты уже задавал(а) 2. пусть при пересечении прямых а и б секущей с сумма односторонних углов равна 180 градусам, так как углы 3 и 4 смежные ( при одной прямой, секущей с ) и 3 +4 = 180 градусам, отсюда следует, что угол 1 ( односторонний с 4) равно углу 3, как накрест лежащие, поэтому а и б параллельны. 3. здесь могут быть два случая рассмотрены, когда сторона при равных внешних углах = 16 и сторона, при которой один из известных углов к ней прилижет, первый случай. если внешние углы равны, и они смежны и образуют с внутренними углами равные по градусам, ведь от 180 мы отнимаем равные углы, то получается, что треугольник равнобедренный с основанием равным 16 см, отсюда находим стороны, 74-16 и делим на два, 2 случай. если углы равны, то это тоже равнобедренный, боковая сторона = 16 см, значит ей равная тоже равна 16, отсюда 74-16*2 то есть это решение на нахождение основания треугольника
Треугольник основания - тупоугольный, ⇒ центр описанной вокруг него окружности лежит вне его плоскости.
Если все ребра пирамиды наклонены к основанию под равным углом, их проекции равны радиусу описанной окружности, следовательно, равны между собой.
По т.синусов 2R=a/sin150°=2а. ⇒ R=а.
Обозначим центр описанной окружности О.
Тогда в прямоугольном ∆ АМО ∠МАО=45°, и ∠АМО равен 90°-45°=45°. ∆ АМО равнобедренный ⇒МО=АО=R. Высота МО=R=a.
---------
Рисунок для наглядности дан не совсем соразмерным условию.