Вероятно, в задаче идет речь о построении перпендикуляра к прямой, проходящего через данную точку на прямой, с циркуля и линейки.
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С. 2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С. 3) Через точки пересечения этих окружностей (К и Н) проведем прямую b. Прямая b - искомый перпендикуляр к прямой а.
Доказательство: А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС. Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.
1) Сумма вертикальных углов равна трети прямого угла. Найдите эти углы.Пусть один угол равен х, так как вертикальные углы равны, то и другой угол х, Их сумма 2х = 2/3·(90°) ⇒х=30° (разделим уравнение на 2, справа 90/3=30) ответ 30° 2) Два данных угла относятся как 1:3, а смежные с ними — как 4:3. Найдите данные углы. Обозначи. один данный угол х, второй 3х, тогда смежные к ним (180-x) и (180-3x) cоответственно (180-х) : (180-3х) = 4:3 - пропорция. Произведение крайних членов пропорции равно произведению средних, поэтому 3(180-х)=4(180-3х) 540-3х=720-12х 12х-3х=720-540 9х=180 х=20 ответ. Один угол 20°, второй 60° 20°:60°=1:3 Смежный углу в 20° равен 160° Смежный углу 60° равен 120° 160°:120°=4:3