1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
Сколько бы ни было сторон у многоугольника выпуклого - чсе равно можно будет в центре его поставить точку. А если ту точку соединить с вершинами этого многоугольника - получится столько треугольников, сколько сторон у многоугольника.. Очевидно, что сумма его (многоугольника) углов будет равна сумме углов всех этих треугольников минус 360 градусов - это все углы около той вершины всех этих треугольников, которая в поставленной нами точке находятся. Даже мне известно, что сумма углов любого треугольника = 180 градусов. то есть - сумма углов многоугольника должна соответствовать таким условиям:
180 *n - 360, где n - количество вершин (=количество сторон) многоугольника. Получается, что нам нужно проверить, кратна ли 180 сумма данного числа и 360
проверяем: вот сумма: 1980+360 = 2340
проверяем кратнсть: 2340/180 = 13
поделилось нацело, а это значит, что
ответ:существует выпуклый многоугольник, сумма углов которого равна 1980. мало того, мы знаем, это - тринадцатиугольник!)