∠CDE составляет одну часть, ∠ADE - 8 таких частей, всего 9 частей.
∠CDE = 90° : 9 = 10°
Сумма острых углов прямоугольного треугольника 90°, тогда из ΔCDE:
∠DCE = 90° - ∠CDE = 90° - 10° = 80°
Диагонали прямоугольника равны и точкой пересечения делятся пополам, тогда ΔCOD равнобедренный (CO = OD), значит углы при его основании равны:
∠OCD = ∠ODC = 80°.
В ΔOCD находим третий угол:
∠COD = 180° - (∠OCD + ∠ODC) = 180° - 160° = 20° - угол между диагоналями.
Объяснение:
Подпишись на меня в ютубе мой канал. LIXORADKA 43. Буду тебя там ждать)
Так как пятиугольник правильный, то его стороны равны 6/5= 1,2 дм
Определим радиус описанной окружности по формуле
R=a/(2*sin(360/2n)),
где a – сторона многоугольника
N –к-во сторон многоугольника
Тогда имеем
R=1,2/(2*sin(36)=0,6/(sin36)
По этой же формуле определим сторону вписанного труугольника
R=a/(2*sin(60))=a/sqrt(3)
0,6/sin(36)=a/sqrt(3)
a=0,6*sqrt(3)/sin(36)
то есть периметр вписанного треугольника равен p=3a=1,8*sqrt(3)/sin(36)