29,6 км/год
Объяснение:
Час шляху дорівнюватиме часу вниз за течією + час вгору за течією. Тобто: 24 / (Vпароплава + 4) + 24 / (Vпароплава - 4) = 2,5 год.
Приводимо до спільного знаменника і отримуємо:
(24(Vпароплава + 4) + 24(Vпароплава - 4)) / (Vпароплава + 4)(Vпароплава - 4) = 2,5
Виносимо 24 за дужки, і перемножуємо праву і ліву частину рівняння за правилом пропорції. У нас виходить квадратне рівняння. Вирішуємо його, і отримуємо два Vпароплава. Одне негативне - ця відповідь не підходить. А друге 29.6 км/год.
Вот и ответ.
Мы знаем, что расстояние от точки до прямой - это перпендикуляр, опущенный из этой точки на прямую. В нашем случае это будет отрезок, параллельный оси Х.
Следовательно, расстояние от любой точки на координатной плоскости до прямой АС будет равно модулю разности координат Х этой точки и координаты Х точки, расположенной на этой прямой.
ответ: искомое расстояние равно (18-(-32)=50.
Решение для общего случая:
В общем случае надо было написать уравнение прямой, проходящей через две точки: А и С и из него получить уравнение перпендикуляра к этой прямой, проходящего через точку В:
(X+32)/0=(Y-16)/11 или Х+32=0 (1). То есть в уравнении прямой АС в классическом виде: Ax+By+C=0 мы получили коэффициенты А=1 и В=0.
Найдем уравнение прямой, перпендикулярной прямой АС и проходящей через точку В(18;44):
а) Выделим вектор нормали для прямой АС: n(1;0) - это НАПРАВЛЯЮЩИЙ ВЕКТОР для искомого перпендикуляра. Тогда уравнение перпендикуляра составим по точке В и направляющему вектору n(1;0):
(X-18)/1=(Y+44)/0 или Y=-44.(2) Точка пересечения прямой АС и перпендикуляра ВD к этой прямой найдется из системы уравнений (1) и (2): D(-32;-44).
Расстояние (модуль) ВD:
|ВD|=√[(Хd-Xb)²+(Yd-Yb)²]=√[(-32-18)²+(=-44-(-44))²]=50.
ответ:50.