Через вершину а некоторого угла, равного 60°, проведена окружность‚ пересекающая стороны угла в точках b и d, а его биссектрису в точке с. найти сумму длин отрезков ав в ad,если площадь четырёхугольника abcd равна 1. подробно, и с чертежом.
Площадь параллелограмма равна произведению стороны и высоты, проведенной к этой стороне. Пусть одна сторона равна х см, тогда вторая будет равна (х + 2) см. С одной стороны площадь параллелограмма равна (х ·20) см². С другой стороны - (х + 2) · 16 см². Замечу, что меньшая сторона умножается на большую высоту и наоборот. Т.к. это площадь одного и того же параллелограмма, то приравняем эти выражения и решим получившееся уравнение: 20х = 16(х + 2) 20х = 16х + 32 20х - 16х = 32 4х = 32 х = 8 Значит, меньшая сторона равна 8 см, а большая - 10 см. Площадь параллелограмма равна 20 · 8 = 160 (см²) ответ: 160 см².
Дана прямоугольная трапеция ABCD с основаниями AD u BC, угол BAD=90°. AB = 2r В трапецию можно вписать окружность только тогда, когда равны суммы противоположных сторон трапеции ⇒ AB + CD = BC + AD Вписанная окружность касается боковой стороны трапеции в точке Е так, что CE = 4 см, DE = 9 cм ⇒ СD = CE + DE = 4 + 9 = 13 (cм) Свойство прямоугольной трапеции, в которую вписана окружность: Если точка касания делит боковую сторону на известные отрезки m и n, то радиус вписанной окружности равен r = √(mn) r = √(4*9) = √36 = 6 (см) ⇒ AB = 2*6 = 12 (см)
AB + CD = BC + AD 12 + 13 = BC + AD BC + AD = 25 BC = 25 - AD
Опустим высоту CF на основание AD. ABCF - прямоугольник ⇒ ⇒ BC = AF ⇒ BC = AD - DF ⇒ 25 - AD = AD - DF AD + AD - DF = 25 2AD - DF = 25
В прямоугольном треугольнике CDF: CD = 13 cм - гипотенуза СF = AB = 12cм - катет DF - катет
2AD - 5 = 25 2AD = 25 + 5 2AD = 30 AD = 30 / 2 AD = 15 (cм) BC = 25 - 15 = 10 (cм)
Свойство прямоугольной трапеции, в которую вписана окружность: Если в прямоугольную трапецию вписана окружность, площадь трапеции равна произведению ее оснований