Доказательство: АК = СМ, т. к. в равнобедренном тр-ке биссектрисы, проведенные к боковым сторонам равны (по теореме);
Четырехугольник АМКС, где СМ и АК - диагонали, Δ АОС равнобедренный , <ОАС = <МАО = <АСО = <КСО = х;
<АОС = <МОС = 180 - х - х = 180 - 2х.
ΔМОК - равнобедренный.
Т.к. АК = МС и АО = ОС , то ОМ = ОК, <ОМК = <ОКМ = (180 - <МОК)/2 = 180 - (180 - 2х)/2 = х, т.е <ОМК = <АСО и <ОАС = <ОКМ.
Если при пересечении двух прямых третьей внутренние разносторонние углы равны, то прямые параллельны (признаки параллельности прямых
сумма углов выпуклого четырехугольника равен 360°( это по формуле 180(n-2). n-это количество углов, в нашем случае количество углов равен 4, т.к четырехугольник. получает 180(4-2)=180*2=360°)
2:3:4:9 это все части. цифра 9 самая большая, значит это самый большой угол четырехугольника так как он состоит из 9 частей
но чтобы найти 9 частей нам сначала нужно найти 1 часть, для этого составим уравнение
пусть 1 часть это х, тогда 2 части это 2х, 3 части это 3х, 4 части это 4х , а 9 частей это 9х. их сумма равна 360°
2х+3х+4х+9х=360
18х=360
х= 20 это одна часть
самый большой угол состоит из 9 частей поэтому это число нужно умножить на 9
20*9= 180°---большой угол