М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maksik008
maksik008
21.02.2022 09:45 •  Геометрия

Найдите площадь основания и площадь боковой поверхности правильной n-угольной пирамиды, если n=4, высота пирамиды равна h , а боковое ребро образует с высотой пирамиды угол бета (h=4см, бета =60 градусов

👇
Ответ:
sasha22114
sasha22114
21.02.2022
Прикрепляю....................................
Найдите площадь основания и площадь боковой поверхности правильной n-угольной пирамиды, если n=4, вы
4,4(56 оценок)
Открыть все ответы
Ответ:
vladekan
vladekan
21.02.2022
Построение ясно из рисунка.
Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S  пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н.
Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды  SABCD.

Так как пирамида правильная, в основании - квадрат.
Диагональ квадрата  равна в нашем случае 6√2.
Ее половина ОС=3√2.
Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14.
Необходимо найти перпендикуляр SH к плоскости BCMN.
Вариант решения - через подобие прямоугольных  треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые.
Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF.
Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC).
Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO).
Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG.
FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно,  SE=SO-EO=2√14.
EF находим из треугольника EOF по Пифагору:
EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23.
ответ: SH=6√14/√23.

Вправильной четырехугольной пирамиде sabcd основание abcd - квадрат со стороной 6, а боковое ребро р
4,5(59 оценок)
Ответ:
marimuravskap08uv0
marimuravskap08uv0
21.02.2022
Пусть даны два прямоугольных треугольника АВС и А1В1С1, у которых <А=<А1=90°, <C=<C1 и высоты АН и А1Н1 равны.
Тогда и <B=<B1, так как сумма острых углов прямоугольного треугольника равна 90°, то есть <B=90-С, а <D1=90-С1.
Высоты АН и А1Н1 делят треугольники АВС и А1В1С1 на подобные.
Значит <BAH=<C, a <CAH=<B. Точно так же <B1A1H1=<C1,
a <C1A1H1=<B1. Но <C=<C1 a <B=<B1.
Значит <BAH=<B1A1H1, a <CAH=<C1A1H1.
Тогда прямоугольные треугольники АВН и А1В1Н1 равны по катету (АН=А1Н1 -дано)  и прилежащему острому углу (<BAH=<B1A1H1). Значит ВН=В1Н1.
Прямоугольные треугольники АСН и А1С1Н1 равны по катету (АН=А1Н1 -дано)  и прилежащему острому углу (<СAH=<С1A1H1). Значит СН=С1Н1.
ВС=ВН+СН, В1С1=В1Н1+С1Н1. Отсюда ВС=В1С1.
Гипотенузы треугольников ВС и В1С1 равны, острые углы их тоже равны, значит треугольники АВС и А1В1С1 равны по равенству гипотенузы и острому углу (третий признак).
Что и требовалось доказать.

Докажите равенство прямоугольных треугольников по острому углу и высоте, опущенной на гипотенузу
4,4(64 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ