М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Стерва12345
Стерва12345
13.02.2020 04:23 •  Геометрия

Около тупоугольного треугольника описана окружность радиуса 25 см.расстояние от центра окружности до основания равно 7 см.вычислите расстояние от центра окружности до боковой стороны треугольника

👇
Ответ:
Velievtim2000
Velievtim2000
13.02.2020
Задача решается так, в силу симметрии высота равнобедренного треугольника проходит через центр описанной окружности и заданные 7 сантиметров - часть (или продолжение) высоты от центра окружности до основания.
Далее расстояние от центра окружности до любой вершины треугольника - ее радиус - 25 см.
Построим треугольник на 7 см части высоты и половине основания (у равнобедренного тр-ка высота и медиана совпадает) - получим прямоугольтый треугольник с гипотенузой 25 см, и катетами 7 см и половина основания, отсюда по т. Пифагора находим половину основания = корень (25*25-7*7)=24 см, полная высота исходного треугольника как нетрудно убедиться либо 7+25=32 см, либо 25-7=18 см, тогда произведение оных 24 на 32 см даст площадь исходного треугольника 768 см^2, и во втором случае 24 на 18 = 432 см^2
з
4,6(28 оценок)
Открыть все ответы
Ответ:
maslennikovavi2
maslennikovavi2
13.02.2020
Используем свойство касательных, проведенных из одной точки: отрезки касательных к окружности (в нашем случае это КА и КВ), проведенные из одной точки (это К), равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности). Нам важно, что КА=КВ.
Треугольник АКВ получается таким образом равнобедренным, и углы при его основании АВ должны быть равными. Найдем их:
<KAB=<KBA=(180-<K):2=(180-72):2=54°.
Угол КВО прямой, т.к. касательная к окружности КВ перпендикулярна к радиусу ОВ, проведенному в точку касания В. Отсюда
<ABO=<KBO-<KBA=90-54=36°
Касательные к окружности с центром о в точках а и в пересекаются под углом 72 градуса. найдите угол
4,8(53 оценок)
Ответ:
Прямые АВ1 и ВД1 являются скрещивающимися.
Чтобы найти расстояние между такими прямыми нужно одну из прямых перенести параллельно самой себе так, чтобы она пересекла плоскость другой прямой.
Переносим прямую ВД1 (главную диагональ куба) параллельно себе. Получим прямую В2Д2, которая пересекла плоскость АА1В1В в точке Е, являющейся серединой отрезка АВ1 и серединой отрезка В2Д2. Из точки Е опустим перпендикуляр на прямую ВД1 и попадём точно в середину ВД1, которая является и центром куба О.
Расстояние ЕО и будет расстоянием между прямыми АВ1 и ВД1.
Отрезок ЕО - есть расстояние между центром плоскости АА1В1В  и центром куба. Это расстояние по величине равно половине ребра.
Таким образом, ЕО = 0,5 · 5√6 = 2,5√6
ответ: 2,5√6
4,5(62 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ