М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Yorgen1
Yorgen1
04.02.2022 20:55 •  Геометрия

Площадь сечения шара плоскостью в 16 раз меньше площади поверхности шара. найдите расстояние от плоскости сечения до центра шара, если радиурадиус сечения равен 2см.

👇
Ответ:
4πR^2= 16* πr^2
r=R/2
l=√(R^2-r^2)=√3*r= 2√3
4,8(52 оценок)
Открыть все ответы
Ответ:
nikitakomer
nikitakomer
04.02.2022

S_{GHK}= \dfrac{3}{7}

Объяснение:

Прямоугольник АВСD

S_{ABCD} = 10

BE = EF = FC

AG = GD

-------------------------

S_{GHK}- ?

-------------------------

Пусть длинные стороны прямоугольника равны а, а короткие - b.

ВС = AD = a

FD = СВ = b

Тогда площадь прямоугольника

S_{ABCD} = a\cdot b = 10

ΔBEH ~ ΔDGH по двум углам (∠BEH = ∠DHG  - вертикальные углы; ∠HBE = ∠HDG -внутренние накрест лежащие углы при ВС║AD и секущей BD)    

Из подобия этих треугольников следует пропорциональность сторон BE = a/3 и DG = a/2, откуда , что коэффициент подобия

k = a/3 : a/2 = 2/3

Высоты этих треугольников также относятся как 2:3, и высота ΔDGH равна 3b/5. Площадь ΔDGH равна

S_{DGH} = \dfrac{1}{2} \cdot \dfrac{a}{2}\cdot \dfrac{3b}{5} = \dfrac{3}{20}ab = \dfrac{3}{2} .

ΔBFK ~ ΔDGK по двум углам (∠BKFH = ∠DKG  - вертикальные углы; ∠KBF = ∠KDG -внутренние накрест лежащие углы при ВС║AD и секущей BD) .    

Из подобия этих треугольников следует пропорциональность сторон BF = 2a/3 и DG = a/2, откуда  коэффициент подобия

k = 2/3 : a/2 = 4/3

Высоты этих треугольников также относятся как 4:3, и высота ΔDGK равна 3b/7. Площадь ΔDGK равна

S_{DGK} = \dfrac{1}{2} \cdot \dfrac{a}{2}\cdot \dfrac{3b}{7} = \dfrac{3}{28}ab = \dfrac{15}{14} .

Площадь ΔGHK

S_{GHK}= S_{DGH}-S_{DGK}= \dfrac{3}{2} -\dfrac{15}{14} = \dfrac{3}{7}

4,4(37 оценок)
Ответ:
ксения1373
ксения1373
04.02.2022

Выведу обобщённую формулу для подобных задач про трапецию с известными диагоналями AC = x, BD = y, и суммой оснований BC + AD = m

Проведём из вершинны С прямую СЕ, параллельную BD, тогда BC || DE, CE || BD ⇒ BCED - параллелограми, ВС = DE, CE = BD = y

S (abcd) = (BC + AD)•CH/2 = (DE + AD)•CH/2 = AE•CH/2 = S (ace)

Площадь трапеции ABCD равна площади треугольника ACE

Найдём плошадь ΔАСЕ по формуле Герона: АС = х, CE = y, AE = m

Площадь трапеции с диагоналями х и у и суммой оснований равной m:S = √( p • (p - x) • (p - y) • (p - m) ) , где р = (х + y + m)/2

Средняя линия трапеции: MN = (BC + AD)/2 = 5 ⇒ m = 10, x = 9, у = 17

S (abcd) = √(18•(18 - 9)(18 - 17)(18 - 10)) = √(18•9•1•8) = 36

ответ: 36


Найдите площадь трапеции, диагонали которой равны 17 и 9, а средняя линия равна 5.
4,7(100 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ