Поскольку угол ВАС = углу ВСА, то треугольник ВАС - равнобедренный. Тогда ВА = ВС. Поскольку СС1 - бисектриса, то угол АСС1 = углу ВСС1. Поскольку АА1 - бисектриса, то угол САА1 = углу ВАА1. У треугольников АСС1 и САА1: 1) ВА = ВС 2) Угол АСС1 = углу САА1 3) АС - общая сторона За 1 признаком равности треугольников треугольник АСС1 = треугольнику САА1. У равных треугольников соответствующие углы и стороны равны. Тогда угол ОАС = углу ОСА. Поэтому треугольник АОС равнобедренный.
Окружности будут равные, т.к. их диаметры равны, как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции)) центры окружностей расположены на биссектрисах соотв углов: CO1, DO1, CO2, DO2 CO1 _|_ DO1 как биссектрисы углов, сумма которых = 180 градусов))) аналогично CO2 _|_ DO2 CO2DO1 --прямоугольник, диагонали прямоугольника равны: CD=O1O2 радиус окружностей можно найти из прямоугольного треугольника, построив еще одну высоту трапеции))) отрезки касательных к окружности, проведенных из одной точки, равны)))
Две точки, которые лежат на кругах разных основ цилиндра соединены отрезком. Найти его длину, если радиус равен 10 см, высота - 17 см, расстояние от оси к отрезку 4 см ------ Уточним, что данные две точки, которые лежат на кругах разных основ цилиндра, расположены на окружностях, ограничивающих эти круги, а расстояние от оси к отрезку 4 см - это расстояние от оси цилиндра до отрезка 4 см.
Сделаем рисунок, назовем данный отрезок АВ. АВ и ось цилиндра ОО1 - скрещивающиеся прямые, т.к. не параллельны и не пересекаются. Расстояние между скрещиваюимися прямыми - это расстояние между одной из этих прямых и параллельной ей плоскостью, проходящей через другую прямую. Проведем параллельно ОО1 плоскость, содержащую АВ. Для этого из А и В проведем к противоположным основаниям перпендикуляры АС и ВД. Соединим все четыре точки. АС=ВД= высоте цилиндра =17 см АДВС - прямоугольник, т.к. основания цилиндра параллельны и углы ДВС, АСВ=90º по построению.. АВ лежит в получившейся плоскости как диагональ этого прямоугольника. Расстояние от прямой ОО1 до параллельной ей плоскости измеряют перпендикуляром. Проведем из центра О перпендикуляр к хорде ВС. ВН=НС по свойству радиуса и хорды. Из прямоугольного треугольника ОНВ найдем длину НВ по т.Пифагора: ВН²=ВО²-ОН²=100-16=84 ВН=√84 BC=2 BH=2√84 Из прямоугольного треугольника АВС по т. Пифагора найдем АВ: АВ²=ВС²+АС²=4*84+289=625 АВ=√625=25 см
Поскольку СС1 - бисектриса, то угол АСС1 = углу ВСС1.
Поскольку АА1 - бисектриса, то угол САА1 = углу ВАА1.
У треугольников АСС1 и САА1:
1) ВА = ВС
2) Угол АСС1 = углу САА1
3) АС - общая сторона
За 1 признаком равности треугольников треугольник АСС1 = треугольнику САА1. У равных треугольников соответствующие углы и стороны равны. Тогда угол ОАС = углу ОСА. Поэтому треугольник АОС равнобедренный.