• На данном рисунке 6 - это длина рёбра основания, 4 - высота и одновременно медиана (так как исходный треугольник в основании - равнобедренный), половина равна 3, рассмотрим один из треугольников, которые получаются разделением медианы (равной 4), по обратной теореме Пифагора - треугольник прямоугольный, сторона равна:
a = √(4² + 3²) = √25 = 5 (а - боковая сторона равнобедренного треугольника, лежащего в основании)
• Рассмотрим треугольник, в котором угол равен 60°, а нижняя часть, как мы нашли, равна 5, сам треугольник прямоугольный, поэтому:
tg60° = x/5
x - боковое ребро
x = tg60° • 5 = 5√3
• Sполн. = Sбок. + 2Sосн.
Sбок. = Pосн. • h = (5+5+6) • 5√3 = 16 • 5√3 = 80√3
Sосн. = 6 • 4 • ½ = 12
Sполн. = 80√3 + 12
Надо вычислить расстояние от центра до хорды (все равно какой). Ясно, что треугольник, вершины которого - точки пересечения хорд - правильный. Ясно и то, что центр этого треугольника совпадает с центром окружности. Но - заодно - это центр вписанной в этот треугольник окружности. В правильном треугольнике радиус вписанной окружности равен трети высоты, то есть корень(3)/6 от стороны, а сторона ЭТОГО треугольника а/3.
Итак, есть хорда длины а, отстоящая от центра на расстояние а*корень(3)/18.
R^2 = (a/2)^2 + (а*корень(3)/18)^2 = a^2*7/27; R = a*корень(21)/9
9*10*cos 125≈-51,6