Дан треугольник abc, в котором ac=5, ab=6, bc=7. биссектриса угла c пересекает сторону ab в точке d. определите площадь треугольника adc. а)20 б)15 в)5корней6/2 г)18
Находим отрезок АД по свойству биссектрисы: АД/АС = ВД/ВС. АД = (АС*ВД)/ВС = 5*(6-АД)/7, 7АД = 30 - 5АД, 12АД = 30, АД = 30/12 = 2,5. Так как у треугольников АСД и АСВ общая высота, то их площади пропорциональны основаниям, то есть отрезкам АД и АВ. S(АСД)/S(АСВ) = 2,5/6. Находим площадь треугольника АВС: S(АСВ) = √(p(p-a)(p-b)(p=c)). Полупериметр р = (а+в+с)/2 = (7+5+6)/2 =18/2 = 9. S(АСВ) = √(9*2*4*3) = 6√6. S(АСД) = (2,5*S(АСВ))/6 = (2,5*6√6)/6 = 2,5√6 = 5√6/2.
На мой взгляд это странное условие (странное в силу отсутствия картинки), может быть расшифровано так: дан прямоугольный треугольник с известной гипотенузой c=4 и известной проекцией a_c катета a на гипотенузу. Требуется найти катеты a, b, проекцию b_c катета b на гипотенузу и высоту, опущенную из вершины прямого угла.
По известной формуле a^2=c·a_c=4·1=4⇒a=2.
b_c=c-a_c=4-1=3; b^2=c·b_c=4·3⇒b=2√3
Наконец, высоту можно найти или как среднее геометрическое a_c и b_c:
АД/АС = ВД/ВС.
АД = (АС*ВД)/ВС = 5*(6-АД)/7,
7АД = 30 - 5АД,
12АД = 30,
АД = 30/12 = 2,5.
Так как у треугольников АСД и АСВ общая высота, то их площади пропорциональны основаниям, то есть отрезкам АД и АВ.
S(АСД)/S(АСВ) = 2,5/6.
Находим площадь треугольника АВС:
S(АСВ) = √(p(p-a)(p-b)(p=c)).
Полупериметр р = (а+в+с)/2 = (7+5+6)/2 =18/2 = 9.
S(АСВ) = √(9*2*4*3) = 6√6.
S(АСД) = (2,5*S(АСВ))/6 = (2,5*6√6)/6 = 2,5√6 = 5√6/2.
ответ: площадь треугольника ADC равна: в)5√6/2