Основание правильной пирамиды-треугольник со стороной 6 см. апофема пирамиды равна 10 см.вычислите площади основания,боковой грани и полной поверхности
A-сторона треугоника в основании, Площадь основания находим по специальной формуле для равносторонний треугольника S=(√3*a^2)/4 S=(√3*6^2)/4=9√3 2). Площадь боковой грани равна сумме площадей трех равных равнобедренных треугольников. Площадь одного из этих треугольников находим по формуле : S∆=1/2*a*h, где h это высота опущенная из вершины на основание бокового треугольника, которая уже дана в условии, ведь апофема это и есть высота данного треугольника. S∆=1/2*6*10=30 теперь умножим 30 на 3, так мы найдем площадь трех треугольников,т.е. найдем площадь боковой поверхности. Sбок.=30*3=90 3). Теперь найдем площадь полной поверхности, сложив площадь основания и боковую площадь пирамиды Š=9√3+90=9*(√3+10)
Около треугольника можно описать окружность, притом только одну. Центр описанной окружности треугольника лежит в точке пересечения серединных перпендикуляров к его сторонам. В правильном треугольнике высота является также медианой и биссектрисой. Центр описанной окружности правильного трегольника лежит в точке пересечения высот/медиан/биссектрис. Высоты/медианы/биссектрисы правильного треугольника равны a·√3/2 Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины. Расстояние от вершины до точки пересечения медиан правильного треугольника - радиус описанной окружности (R). R= h·2/3 R= a·√3/2·2/3 = a·√3/3
Площадь круга (S) равна пR^2. S= п(a·√3/3)^2 <=> S= (п·a^2)/3 <=> a= √(3·S/п)
№1 по теореме ФалесаМN/МP = MK/ME12/8=MK/6MK= 9 МP/МN =PE/NK8/12=PE/NK = 2 : 3 №2Треугольник АВС подобен треугольнику MNK по второму признаку подобности (по двум пропорцианильным сторонам и равному углу между ними)AB/MN = BC/NK=12/6=18/9=2 - коэф.подобности,Значит AB/MN= AC/MK , MK= 12 x 7/6=14В подобных треугольниках соответствующие углы равны.угол С =60, угол А =50№3треугольник АОС подобен треугольнику ОДВ по первому признаку подобности (по двум равным углам)Периметры подобных треугольников относятся как соответствующие стороны -Периметр АОС : периметру ВОД = АО : ОВ=2 :3,Периметрр АОС = периметр ВОД х 2 /3= 21 х 2/3=14
Площадь основания находим по специальной формуле для равносторонний треугольника S=(√3*a^2)/4
S=(√3*6^2)/4=9√3
2). Площадь боковой грани равна сумме площадей трех равных равнобедренных треугольников. Площадь одного из этих треугольников находим по формуле :
S∆=1/2*a*h, где h это высота опущенная из вершины на основание бокового треугольника, которая уже дана в условии, ведь апофема это и есть высота данного треугольника.
S∆=1/2*6*10=30
теперь умножим 30 на 3, так мы найдем площадь трех треугольников,т.е. найдем площадь боковой поверхности.
Sбок.=30*3=90
3). Теперь найдем площадь полной поверхности, сложив площадь основания и боковую площадь пирамиды
Š=9√3+90=9*(√3+10)