Катет прямоугольного треугольника, прилежащий к углу 60 градусов , и гипотенуза в сумме составляют 37,8 см. найдите наибольшую сторону этого треугольника.
1) Произведением вектора a→ на число k ( k ≠0) называется вектор b→, модуль которого равен ∣∣∣b→∣∣∣=∣∣k∣∣⋅∣∣a→∣∣, при этом: - векторы a→ и b→ сонаправлены, если >0; - векторы a→ и b→ противоположно направлены, если <0. 2) Если вектор b равен произведению ненулевого числа k и ненулевого вектора a, то есть b = k · a, тогда:
b || a - вектора b и a параллельны a↑↑b, если k > 0 - вектора b и a сонаправленные, если число k > 0 a↑↓b, если k < 0 - вектора b и a противоположно направленные, если число k < 0 |b| = |k| · |a| - модуль вектора b равен модулю вектора a умноженному на модуль числа k
Пусть меньшая диагональ ромба равна x, тогда большая равна 2x.
Площадь ромба равна половине произведения диагоналей.
x*2x/2=32
x^2=32
x1=√32=4√2см
x2=-4√2см не удовлетворяет условиям задачи.
Большая диагональ ромба d2=2*4√2=8√2см
Диагонали ромба в точке пересечения делятся пополам и образуют прямой угол.
Рассмотрим любой из 4 прямоугольных треугольников, образовавшихся при пересечнии диагоналей. Катеты этого треугольника равны a=(4√2)/2=2√2см, b=(8√2)/2=4√2см. По теореме Пифагора сторона ромба c=√(2√2)^2+(4√2)^2=√40=2√10см