1)получим треугольник со сторонами 4 и 5, и углом 180-52=128 используйте теорему косинусов (квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.) a^2 = b^2 + c^2 - 2bc*cos(a) 2)вначале по теореме косинусов: cos87=0,05 sin87=0,9 bc^2=ab^2+ac^2-2ab*ac*cosa bs^2=45^2+32^2-2*45*32*0,05 bc^2=2905 bc=54(примерно) по теореме синусов: ab/sinc=bc/sin87 45/sinc=54/0,9 sinc=0,75 уголc=41(примерно) уголb=180-87-41=52
Признаки равнобедренной трапеции:
1. Если углы при основании трапеции равны, то она равнобедренная.
2. Если диагонали трапеции равны, то она равнобедренная.
3. Если сумма противолежащих углов трапеции равна 180°, то эта трапеция равнобедренная.
4. Если вокруг трапеции можно описать окружность, то она равнобедренная.
Доказательство 1 признака:
Дано: ABCD - трапеция,
∠BAD = ∠CDA
Доказать: АВ = CD.
Доказательство:
Проведем высоты ВН и СК.
В треугольниках АВН и DCK:
∠ВНА = ∠СКD = 90°,
ВН = СК как расстояния между параллельными прямыми,
∠ВАН = ∠CDK по условию, ⇒
ΔАВН = ΔDCK по катету и противолежащему острому углу, значит
АВ = CD.