Самое простое доказательство этой теоремы через радиус описанной окружности.
Около прямоугольного треугольника АВС (угол С = 90 градусов) опишем окружность (вершины треугольника АВС лежат на окружности, все углы треугольника - вписанные углы). Центр О этой окружности лежит в середине гипотенузы АВ, так как вписанный угол равен половине градусной меры дуги, на которую опирается, а прямой угол опирается на половину окружности, концы которой соединяет диаметр АВ.
Отрезок СО яляется медианой и радиусом описанной около треугольника АВС окружности.
Итак, АО = ВО = СО, как радиусы. Теорема доказана.
Медиана,проведенная гипотенузе в прям.угольном треугольнике равна половине гипотенузы. Док-во: проведем прямую СД, СД||АВ ,продолжим АО. Рассмотрим треугольники : ВОА и СОД ,они равны(по второму признаку) Рассмотрим треугольник : САВ и САД ,они равны по двум катетам (АВ=СД.Ас-общий)=>угол ОАС = углу ОСА=>в треугольнике АОС: АО=ОС=>медиана равна половине гипотенузе,чтд.
NM║CB ⇒ ∠SNM = ∠SCB; ∠SMN = ∠SBC как соответственные углы ⇒ ΔSCB ~ ΔSNM по двум равным углам ⇒ ⇒ Т.к. фигура в сечении пирамиды плоскостью, параллельной основанию, подобна основанию, то ΔABC ~ ΔKMN с коэффициентом подобия k = Площади подобных фигур относятся как коэффициент подобия в квадрате
Примем длины рёбер за 1. Ромб с острым углом 60 градусов имеет меньшую диагональ, равную стороне. Половина такого ромба - равносторонний треугольник. Опустим из точек В и Д перпендикуляры на боковое ребро. Они пересекутся в точке К. Треугольник ВКД - равнобедренный. В основании - диагональ ВД = 1. КВ = КД = 1*cos 30° = √3/2. Искомый угол ВКД равен : ∠BKD = 2arcsin((1/2)/(√3/2) = 2arcsin( 1/√3) = 2arcsin(√3/3) = 70,52878°.
Около прямоугольного треугольника АВС (угол С = 90 градусов) опишем окружность (вершины треугольника АВС лежат на окружности, все углы треугольника - вписанные углы). Центр О этой окружности лежит в середине гипотенузы АВ, так как вписанный угол равен половине градусной меры дуги, на которую опирается, а прямой угол опирается на половину окружности, концы которой соединяет диаметр АВ.
Отрезок СО яляется медианой и радиусом описанной около треугольника АВС окружности.
Итак, АО = ВО = СО, как радиусы. Теорема доказана.