Вравнобедренном треугольнике abc c основанием ас проведена биссектриса см. найдите углы треугольника асм, если угол при вершине треугольника авс равен 84о. сделайте чертеж.
Дано: δ авс∠с = 90°ак - биссектр.ак = 18 смкм = 9 смнайти: ∠акврешение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км. рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°. т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30° рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60° искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120° ответ: 120°
Построение отрезка, равного данному. дан - отрезок ab. требуется - построить равный ему отрезок (такой же длины). для этого - построим произвольный луч с началом в новой точке c. циркулем замерим данный отрезок ab. теперь тем же самым раствором циркуля на построенном луче от его начала - c - отложим отрезок, равный данному. для этого иглой циркуля упираем в начало луча c, а пишущей ножкой проводим дугу до пересечения с лучом. точку пересечения назовём d. отрезок cd равен отрезку ab. построение закончено. источник:
∠ВАС = ∠АСВ = (180-∠АВС)/2 = (180-84)/2 = 48°
∠АСМ = ∠АСВ/2 = 48/2 = 24° (т.к. СМ - биссектриса ∠АСМ)
∠АМС = 180-(∠МАС+∠АСМ) = 180-(48+24) = 108°
ответ: 48°; 24°; 108°.