Ну очевидно, что длина ребра равна 6 см, а половины ребра 3 см. Скрещивающимися являются любое вертикальное ребро и две пары горизонтальных ребер (два ребра на верхнем и два ребра на нижнем основаниях, не пересекающиеся с данным вертикальным ребром. Расстояние между их серединами равно √(3^2+6^2+3^2)=√(54)=3*√(6) см. Чтоб было понятнее, представь, что куб разрезан пополам плоскостью, параллельной одной из граней. Получившаяся пластинка снова разрезана пополам, но плоскостью, параллельной другой грани. Получился параллелепипед с размерами 3х3х6 см. Искомое расстояние является диагональю этого параллелепипеда.
Cos <PАH можно найти из прямоугольного ΔHAP, но пока в нем известна только одна сторона АР, поэтому найду еще вторую... Из ΔABP(в нем известны все стороны) найду cosB по т. косинусов AP^2=AB^2+BP^2-2*AB*AP*cosB 5^2=6^2+3^2-2*6*3*cosB 25=45-36cosB cosB=20/36=5/9 Теперь найду АС по этой же теореме AC^2=6^2+6^2-2*6*6*5/9 AC^2=72-40=32 AC=4√2 AH1=AC/2=2√2 BH1^2=AB^2-AH1^2=6^2-(2√2)^2=36-8=28 AH=2√7 ΔABH1 и ΔACH подобны по 2 углам AB/AC=BH1/AH 6/(4√2)=2√7/AH AH=4√14/3 сos<PAH=AH/AP=4√14/(3*5)=4√14/15≈0.99