М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Triana
Triana
13.02.2020 23:16 •  Геометрия

Впрямоугольном треугольнике авс ( с=90 градусов) отрезки сн, сl, см-соответственно вісота, биссектриса, медиана треугольника.найдите биссектрису сl, если сн=6см, см=10 см.

👇
Ответ:
Lexakek111
Lexakek111
13.02.2020
Находим длину отрезка МН:
МН = √(10²-6²) = √(100-36) = √64 = 8 см.
Угол МСН равен:
∠МСН = arc sin(6/10) =  0,927295 радиан = 53,1301°. 
В прямоугольном треугольнике угол между медианой и высотой равен разности острых углов этого треугольника.
Запишем систему уравнений:
∠В - ∠А = 53,1301°,
∠В + ∠А = 90°.

2∠В = 143,1301°
∠В = 143,1301°/2 =  71,56505°.
Находим сторону ВС:
ВС = СН/sin∠B = 6/0,948683 =  6,324555.
Теперь в треугольнике LCB находим угол CLB с учётом того, что угол LCB равен 45°, так как LC - биссектриса прямого угла.
∠CLB = 180°- ∠В - 45° = 180°- 71,56505°- 45° =  63,43495°.
Биссектрису  CL находим как сторону треугольника LCB по теореме синусов.
CL = BC*(sin∠B/sin∠CLB) = 6,324555*(0,948683/0,894427) = 6,708204.
4,5(72 оценок)
Открыть все ответы
Ответ:
global34523
global34523
13.02.2020
Пусть это будут касательные АВ и АС, а центр окружности - О. Соответственно точки В и С - точки касания, а поэтому [ОС] перпендикулярен [АС], [ОВ] перпендикулярен [АВ]. Тогда рассмотрим ∆и АОС и АОВ. Они прямоугольные и у них равны катеты ОС и ОВ как радиусы одной и той же окружности. К тому же, у них общая гипотенуза. Получаем, что ∆ АОС = ∆ АОВ по катету и гипотенуза, а значит, остальные элементы этих ∆ов тоже равны, то есть |АВ| = |АС|, а это отрезки касательных, проведенных к данной окружности, ч.т.д.
4,4(94 оценок)
Ответ:
ssmir7381
ssmir7381
13.02.2020
Описана окружность - окружность, в которую можно вписать многоугольник так, чтобы все его вершины лежали на окружности. Центром описанной окружности является точка пересечения серединных перпендикуляров. Для доказательства нужно провести окружность, построить внутри треугольник так, чтобы все его вершины лежали на этой окружности, затем построить серединные перпендикуляры к сторонам, отметить точку их пересечения. А затем нужно провести из вершин все трёх углов отрезки к точке пересечения этих серединных перпендикуляров. Они будут равны, так как каждый из треугольников, боковыми сторонами которого являются эти отрезки, будут равнобедренными, т.к. любая точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от сторон данного отрезка.
4,8(90 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ